Caracterización De Bacterias Aeromonadales Móviles Aisladas De Peces Cultivados En Uruguay

Total Page:16

File Type:pdf, Size:1020Kb

Caracterización De Bacterias Aeromonadales Móviles Aisladas De Peces Cultivados En Uruguay UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta TESIS DE MAESTRÍA EN SALUD ANIMAL URUGUAY 2016 i ii iii UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta _________________________ _________________________ Dr. Pablo Zunino Dra. Karina Antúnez Director de Tesis Codirectora de Tesis 2016 iv INTEGRACIÓN DEL TRIBUNAL DE DEFENSA DE TESIS Claudia Piccini; MS, PhD Departamento de Microbiología Instituto de Investigaciones Biológicas "Clemente Estable"- Ministerio de Educación y Cultura - Uruguay Laura Bentancor; MS, PhD Departamento de Bacteriología y Virología Instituto de Higiene - Facultad de Medicina Universidad de la República - Uruguay Martín Fraga; MS, PhD Plataforma de Salud Animal Instituto de Investigaciones Agropecuarias - Uruguay 2016 v vi vii DEDICATORIA …para Federíco, Anaclara y Valeria viii AGRADECIMIENTOS - A Pablo Zunino y Karina Antúnez, gracias por compartir el conocimiento conmigo, abrirme las puertas del IIBCE para poder llevar a cabo este trabajando y por la paciencia y el apoyo en todo momento. - A Daniel Carnevia por el apoyo contínuo y la colaboración brindada en cada uno de mis emprendimientos. - A todo el personal docente y no docente del Instituto de Investigaciones Pesqueras de la Facultad de Veterinaria por tantos años de apoyo y colaboración. - A Belén Branchiccela y todo el personal del Departamento de Microbiología del IIBCE por el apoyo y la colaboración en todas las tareas llevadas a cabo allí. - A Rodrigo Puentes, Uruguaysito Benavides y todo el personal del Área Inmunología de la Facultad de Veterinaria por la colaboración con las taréas de biología molecular llevadas a cabo. - A Amy Carnahan, P. Srinivasan, Pol Huedo y Boris Jovanovic por la colaboración en aspectos relacionados con la identificación de aeromonadales y la evaluación de virulencia de los mismos. - A los acuaristas, productores y veterinarios que aportaron casos clínicos para ésta investigación. - A Claudia Piccini, Laura Bentancor, Martín Fraga, Leonardo Galli, Rolando Mazzoni y Daniel Carnevia por la revisión crítica y los aportes realizados al documento final de tesis. - A Sci-Hub y toda la comunidad de investigadores que trabajan por una ciencia open access. - A mi familia!!! Por ser el motorcito que me impulsa día a día. ix ÍNDICE Resumen xii Summary xiii 1. Introducción 1 1.1. Aspectos taxonómicos 1 1.2. Principales características de los aeromonadales móviles 3 1.3. Aislamiento e identificación 5 1.3.1. Identificación por métodos bioquímicos 6 1.3.2. Identificación por métodos moleculares 6 1.4. Antecedentes en la caracterización de Aeromonas spp. 7 1.4.1. Caracterización bioquímica 7 1.4.1.1. Resistencia a antibióticos 9 1.4.2. Caracterización molecular 10 1.5. La enfermedad en los peces 10 1.5.1. Signos clínicos 11 1.5.2. Patogenia 11 1.5.3. Hallazgos anatomopatológicos y paraclínicos 12 1.5.4. Epizootiología 13 1.6. Importancia para la salud humana 13 2. Hipótesis 15 3. Objetivos 15 3.1. Objetivo general 15 3.2. Objetivos específicos 15 4. Materiales y Métodos 16 4.1. Origen de las aislamientos 16 4.2. Identificación fenoespecífica y caracterización bioquímica 16 4.2.1. Actividad hemolítica 17 4.2.2. Antibiograma 17 4.3. Identificación y caracterización molecular 19 4.3.1. Búsqueda de genes vinculados a factores de virulencia 20 4.3.2. Tipificación mediante técnicas de rep-PCR 20 4.3.3. Análisis de conglomerados a partir de la tipificación de los aislamientos 21 4.3.4. Análisis filogenéticos en base a las secuencias de los genes ARNr 16S y gyrB 21 4.4. Caracterización patológica 22 4.4.1. Modelo in vivo para la evaluación de virulencia 22 4.4.1.1. Sujetos experimentales 22 4.4.1.2. Confección del inoculo y administración a los peces 23 4.4.2. Hallazgos de histopatología 24 4.5. Análisis estadísticos 24 5. Resultados 25 5.1. Origen e identificación de los aislamientos 25 5.2. Caracterización bioquímica 27 5.3. Antibiograma 28 5.4. Genes de virulencia 30 5.5. Caracterización genética 34 5.5.1. Tipificación con técnicas rep-PCR 34 5.5.1.1. Empleo de primers BOX 34 5.5.1.2. Empleo de primers ERIC 37 5.5.1.3. Empleo de primers REP 40 5.5.2. Análisis filogenético a partir de las secuencias del ARNr 16S 41 5.5.2.1. Análisis intraespecífico para las especies nacionales 41 5.5.2.2. Análisis interespecífico de los aislamientos nacionales 42 5.5.2.3. Análisis filogenético realizado entre los aislamientos nacionales y las secuencias 43 depositadas en RDP 5.5.3. Análisis filogenético a partir de las secuencias del gen gyrB 45 5.5.3.1. Análisis intraespecífico para las especies nacionales 45 x 5.5.3.2. Análisis interespecífico de los aislamientos nacionales 46 5.5.3.3. Análisis filogenético entre los aislamientos nacionales y las secuencias depositadas en 46 Aeromonas MLST Databases 5.6. Caracterización patológica 53 5.6.1. Elección de aislamientos candidatos 53 5.6.2. Cálculo de DL5096 para cada aislamiento seleccionado 54 5.6.2.1. Aislamiento H2 54 5.6.2.2. Aislamiento H11 56 5.6.2.3. Aislamiento V2 57 5.6.2.4. Aislamiento V6 59 5.6.3. Comparación entre aislamientos 59 5.6.4. Hallazgos histopatológicos en los peces infectados 60 6. Discusión 63 6.1. Origen e identificación de los aislamientos 63 6.1.1. Hallazgos epizootiológicos 65 6.2. Caracterización bioquímica 66 6.3. Antibiograma 68 6.3.1. Índice de Multirresistencia a Antibióticos (MAR) 69 6.4. Caracterización genética 70 6.4.1. Genes de virulencia 70 6.4.1.1. Aeromonas allosaccharophila 72 6.4.1.2. Aeromonas bestiarium 72 6.4.1.3. Aeromonas caviae/punctata 72 6.4.1.4. Aeromonas hydrophila 73 6.4.1.5. Aeromonas veronii 74 6.4.2. Tipificación mediante técnicas de rep-PCR 75 6.4.2.1. Tipificación de Aeromonas hydrophila 76 6.4.2.2. Tipificación de Aeromonas caviae/punctata 78 6.4.2.3. Tipificación de Aeromonas veronii 79 6.4.3. Análisis filogenéticos 79 6.4.3.1. Empleo de la secuencia del gen que codifica para el ARNr 16S 80 6.4.3.2. Empleo de la secuencia del gen gyrB 80 6.5. Caracterización patológica 83 7. Conclusiones 86 8. Bibliografía 88 Anexo 1: Composición de medios de cultivo 106 Anexo 2: Protocolo de extracción de ADN y composición de solución fijadora de Davidson 107 Anexo 3: Perfiles de identificación molecular de los aislamientos nacionales de Aeromonas 108 spp. para los genes ARNr 16S y gyrB Anexo 4: Árboles filogenéticos correspondientes al análisis de los genes ARNr 16S y gyrB de 143 los aislamientos nacionales de Aeromonas spp. xi LISTA DE CUADROS Cuadro 1. Descripción de los rasgos fenotípicos de Aeromonas spp. móviles en los que se halló 66 discrepancia entre los perfiles obtenidos de aislamientos de peces de Uruguay y la información publicada (Chong et al., 1980, Carnahan et al., 1991; Abbott et al., 1992; Abbott et al., 2003). LISTA DE FIGURAS Figura 1. Corrida electroforética correspondiente a la tipificación con primers BOX realizada 35 sobre Aeromonas hydrophila (H) y A. punctata (P) aisladas de peces cultivados en Uruguay (L: ladder 10 kb). Figura 2. Corrida electroforética correspondiente a la tipificación con primers BOX de 35 Aeromonas allosacharophila (A), A. bestiarium (B) y A. veronii (V) aisladas de peces cultivados en Uruguay (L: ladder10 kb). Figura 3. Análisis de clusters realizado sobre la corrida electroforética correspondiente a la 36 tipificación de aislamientos de Aeromonas hydrophila (H1 a H13) con primers BOX mediante empleo del software Gelcompar II®. El número en cada nodo indica el valor de bootstrap calculado sobre 500 repeticiones (p<0,05) (*: indican aislamientos procedentes de un mismo brote epizoótico). Figura 4. Análisis de clusters realizado sobre la corrida electroforética correspondiente a la 36 tipificación de aislamientos de Aeromonas veronii (V1 a V11) con primers BOX mediante empleo del software Gelcompar II®. El número en cada nodo indica el valor de bootstrap calculado sobre 500 repeticiones (p<0,05) (*, +: símbolos iguales indican aislamientos procedentes de un mismo brote epizoótico). Figura 5. Análisis de clusters realizado sobre la corrida electroforética correspondiente a la 37 tipificación de aislamientos de Aeromonas punctata (P1, P2, P4 y P5) con primers BOX mediante empleo del software Gelcompar II®. El número indica el valor de bootstrap calculado sobre 500 repeticiones (p<0,05) (*: aislamientos procedentes de un mismo brote epizoótico). Figura 6. Corrida electroforética correspondiente a la tipificación con primers ERIC realizada 37 sobre Aeromonas allosaccharophila (A), A. hydrophila (H) y A. punctata (P) aisladas de peces cultivados en Uruguay. L: ladder 10kb. Figura 7. Corrida electroforética correspondiente a la tipificación con primers ERIC y REP 38 realizada sobre Aeromonas bestiarium (B) y A. veronii (V) aisladas de peces cultivados en Uruguay. L: ladder 10kb. Figura 8. Análisis de clusters realizado sobre la corrida electroforética correspondiente a la 39 tipificación de aislamientos de Aeromonas hydrophila (H1 a H3 y H5 a H13) con primers ERIC mediante empleo del software Gelcompar II®. El número en cada nodo indica el valor de bootstrap calculado sobre 500 repeticiones (p<0,05) (*: aislamientos procedentes de un mismo brote epizoótico). Figura 9. Análisis de clusters realizado sobre la corrida electroforética correspondiente a la 39 tipificación de aislamientos de Aeromonas veronii (V1 a V11) con primers ERIC mediante empleo del software Gelcompar II®. El número en cada nodo indica el valor de bootstrap calculado sobre 500 repeticiones (p<0,05) (*, +: símbolos iguales indican aislamientos procedentes de un mismo brote epizoótico).
Recommended publications
  • Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Diposit Digital de la Universitat de Barcelona International Journal of Molecular Sciences Article Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions Gabriel Forn-Cuní, Susana Merino and Juan M. Tomás * Department of Genética, Microbiología y Estadística, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain; [email protected] (G.-F.C.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +34-93-4021486 Academic Editor: William Chi-shing Cho Received: 7 February 2017; Accepted: 26 February 2017; Published: 28 February 2017 Abstract: Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species. Keywords: Aeromonas; genomics; inner core oligosaccharide; outer core oligosaccharide; lipopolysaccharide 1.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date: February 22, 2007 I, _ Samuel Lee Hayes________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Sciences It is entitled: Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms This work and its defense approved by: Chair: _Brian K. Kinkle _Dennis W. Grogan _Richard D. Karp _Mario Medvedovic _Stephen J. Vesper Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences of the College of Arts and Sciences 2007 by Samuel Lee Hayes B.S. Ohio University, 1978 M.S. University of Cincinnati, 1986 Committee Chair: Dr. Brian K. Kinkle Abstract The genus Aeromonas contains virulent bacteria implicated in waterborne disease, as well as avirulent strains. One of my research objectives was to identify and characterize host- pathogen relationships specific to Aeromonas spp. Aeromonas virulence was assessed using changes in host mRNA expression after infecting cell cultures and live animals. Messenger RNA extracts were hybridized to murine genomic microarrays. Initially, these model systems were infected with two virulent A. hydrophila strains, causing up-regulation of over 200 and 50 genes in animal and cell culture tissues, respectively. Twenty-six genes were common between the two model systems. The live animal model was used to define virulence for many Aeromonas spp.
    [Show full text]
  • CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction
    Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study.
    [Show full text]
  • Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Redalyc.Aeromonas Spp.: La Infección En La Trucha Arcoíris
    AquaTIC ISSN: 1578-4541 [email protected] Universidad de Zaragoza España Zepeda-Velázquez, Andrea Paloma Aeromonas spp.: la infección en la trucha arcoíris (Oncorhynchus mykiss) y su aislamiento en México. AquaTIC, núm. 42, enero-junio, 2015, pp. 1-16 Universidad de Zaragoza Zaragoza, España Disponible en: http://www.redalyc.org/articulo.oa?id=49444322001 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista AquaTIC, nº 42 – 2015 1 Revista científica de la Sociedad Española de Acuicultura Revista AquaTIC, nº 42, pp. 01-16. Año 2015 ISSN 1578-4541 http://www.revistaaquatic.com/ Aeromonas spp.: la infección en la trucha arcoíris (Oncorhynchus mykiss) y su aislamiento en México. Andrea Paloma1o Zepeda-Velázquez Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México. Carretera Toluca-Atlacomulco km 15.5. Toluca 50200, México, México. e-mail: [email protected] Resumen El género Aeromonas incluye bacterias Gram negativas que se encuentran ampliamente distribuidas en ambientes acuáticos. Estos microorganismos afectan a una amplia variedad de especies animales, incluido el hombre. En acuicultura, diversas especies de Aeromonas infectan especies de cultivo y producen pérdidas económicas significativas. De manera particular, la producción de trucha arcoíris (Oncorhynchus mykiss) contribuye significativamente en la acuicultura de México. En este trabajo se revisa la patogenia de las especies de Aeromonas que infectan a la trucha arcoíris, así como los diversos factores que modifican esta interacción.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
    microorganisms Review An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity Ana Fernández-Bravo and Maria José Figueras * Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; [email protected] * Correspondence: mariajose.fi[email protected]; Tel.: +34-97-775-9321; Fax: +34-97-775-9322 Received: 31 October 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%).
    [Show full text]
  • Comparative Pathogenomics of Aeromonas Veronii from Pigs in South Africa: Dominance of the Novel ST657 Clone
    microorganisms Article Comparative Pathogenomics of Aeromonas veronii from Pigs in South Africa: Dominance of the Novel ST657 Clone Yogandree Ramsamy 1,2,3,* , Koleka P. Mlisana 2, Daniel G. Amoako 3 , Akebe Luther King Abia 3 , Mushal Allam 4 , Arshad Ismail 4 , Ravesh Singh 1,2 and Sabiha Y. Essack 3 1 Medical Microbiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; [email protected] 2 National Health Laboratory Service, Durban 4001, South Africa; [email protected] 3 Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; [email protected] (D.G.A.); [email protected] (A.L.K.A.); [email protected] (S.Y.E.) 4 Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa; [email protected] (M.A.); [email protected] (A.I.) * Correspondence: [email protected] Received: 9 November 2020; Accepted: 15 December 2020; Published: 16 December 2020 Abstract: The pathogenomics of carbapenem-resistant Aeromonas veronii (A. veronii) isolates recovered from pigs in KwaZulu-Natal, South Africa, was explored by whole genome sequencing on the Illumina MiSeq platform. Genomic functional annotation revealed a vast array of similar central networks (metabolic, cellular, and biochemical). The pan-genome analysis showed that the isolates formed a total of 4349 orthologous gene clusters, 4296 of which were shared; no unique clusters were observed. All the isolates had similar resistance phenotypes, which corroborated their chromosomally mediated resistome (blaCPHA3 and blaOXA-12) and belonged to a novel sequence type, ST657 (a satellite clone).
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Salmonicida from Aeromonas Bestiarum
    RESEARCH ARTICLE INTERNATIONAL MICROBIOLOGY (2005) 8:259-269 www.im.microbios.org Antonio J. Martínez-Murcia1* Phenotypic, genotypic, and Lara Soler2 Maria José Saavedra1,3 phylogenetic discrepancies Matilde R. Chacón Josep Guarro2 to differentiate Aeromonas Erko Stackebrandt4 2 salmonicida from María José Figueras Aeromonas bestiarum 1Molecular Diagnostics Center, and Univ. Miguel Hernández, Orihuela, Alicante, Spain 2Microbiology Unit, Summary. The taxonomy of the “Aeromonas hydrophila” complex (compris- Dept. of Basic Medical Sciences, ing the species A. hydrophila, A. bestiarum, A. salmonicida, and A. popoffii) has Univ. Rovira i Virgili, Reus, Spain been controversial, particularly the relationship between the two relevant fish 3Dept. of Veterinary Sciences, pathogens A. salmonicida and A. bestiarum. In fact, none of the biochemical tests CECAV-Univ. of Trás-os-Montes evaluated in the present study were able to separate these two species. One hun- e Alto Douro, Vila Real, Portugal dred and sixteen strains belonging to the four species of this complex were iden- 4DSMZ-Deutsche Sammlung von tified by 16S rDNA restriction fragment length polymorphism (RFLP). Mikroorganismen und Zellkulturen Sequencing of the 16S rDNA and cluster analysis of the 16S–23S intergenic GmbH, Braunschwieg, Germany spacer region (ISR)-RFLP in selected strains of A. salmonicida and A. bestiarum indicated that the two species may share extremely conserved ribosomal operons and demonstrated that, due to an extremely high degree of sequence conserva- tion, 16S rDNA cannot be used to differentiate these two closely related species. Moreover, DNA–DNA hybridization similarity between the type strains of A. salmonicida subsp. salmonicida and A. bestiarum was 75.6 %, suggesting that Received 8 September 2005 they may represent a single taxon.
    [Show full text]