The Sensory Axis

Total Page:16

File Type:pdf, Size:1020Kb

The Sensory Axis The sensory axis By Gustav Emil Dietrichson Things I’m going to cover and you’re going to understand • The basics • Cutaneous receptors • Dorsal column-medial lemniscus • Spinothalamic tract • The thalamus and the cortex • Pain • Quesons Receptors • Smulus à Conducon change à Generator poten?al • Intereceptors, exteroceptors, proprioceptors, teleceptors Thermoreceptors Chemoreceptors Photoreceptors Mechanoreceptors Nerve fibers • A • B – Preganglionic • C – Pain, temp • Aα – Propriocep?on autonomic ggl • 0,5-2m/s • 70-120m/s • 3-12m/s • Cggl – Postsynap?c • Aβ – Touch sympathe?ch ggl • 5-12m/s • 0,7-2,3m/s • Aγ – Motor • 3-6m/s • Aδ – Pain, temp • 12-30m/s A fibers = Thickest C fibers = Thinnest Cutaneous receptors • Merkel discs • Ruffini endings • Fine touch • Skin stretch • Discriminave touch Apical • Sustained pressure Basal • Meissner corpuscles • Pacinian corpuscles • Texture change • Deep touch • Slow vibraons • Fast vibraons • Both ”Corpuscles” are PHASIC receptors, while the other two are TONIC receptors • *ALL USE Aβ FIBERS Thalamus • What is the Thalamus? • Ventroposterolateral nucleusàBrodmann area 3,1,2 Dorsal column- medial lemniscus • Receives all informaon from • Merkel discs, Meissner corpuscles, Pacinian corpuscles, Ruffini endings • Muscles spindles and Golgi tendon organs • Propriocep?on • Fine touch • Vibraon (Low and high) • Pressure (deep and superficial) • Two touch discriminaon • DRAW! Spinothalamic tract Lateral spinothalamic tract • Anterior spinothalamic • Crude touch • Lateral spinothalamic • Temperature • Pain Everything • Itching annoying • Sexual arousal • DRAW! Fast and slow pain Fast pain Slow pain Aδ fibers C fibers Myelinated Unmyelinated Glutamate Substance P Sharp, specific Not sharp, dull, intense and diffuse Terminates in VPL nucleus of Thalamus 75-90% terminates in the re?cular formaon VR-1/TRPV-1 VRL-1 High temperatures (above 43C) High temperatures (above 43C) H+ change H+ change Capsaicins *Nociceptors called free nerve endings Re?cular formaon • Responsible for alertness in CNS Interpretation of pain • Sorts s?muli and chooses most important one • During sleep it ignores non- crucial smuli Re?cular Brodmann area formaon 3,1,2 Painful smuli VPL nucleus of Cingulate gyrus Thalamus Insular cortex The pain gate Large fibers (+) DCML connues DCML Pain gate Lateral Re?cular Dorsal grey horn Cerebral cortex spinothalamic formaon relieving =Pain Descending analgesic system PVG/PAG Endorphin Nucleus Raphe magnus Enkephalin Limbic system -Serotonin Dynorphin Re?cular formaon Lateral spinothalamic Sensory cortex Interneuron -Serotonin tract in spinal cord Locus coerelus Spinothalamic tract -Norepinephrine PVG = Periventricular gray maer PAG = Periaqueductal gray maer What types of sensation does the pacinian corpuscles convey? • a) Fine touch and discriminave touch • b) Deep touch and fast vibraon • c) Skin stretch and slow vibraon • d) Heat and pain • e) Skin stretch and sustained pressure Where does the DCML decussate? • a) Pons • b) Midbrain • c) Spinal cord above T6 • d) Medulla • e) Spinal cord below T6 Where do most of the fibers from the lateral spinothalamic tract end up? • a) Ventroposterolateral nucleus • b) Postcentral gyrus • c) Re?cular formaon • d) The auau centre of the brain • e) Superior colliculus What types of substances inhibit the lateral spinothalamic tract at the level of spinal cord to numb pain? • a) Opioids • b) Substance P • c) Glutamate • d) Prostaglandins • e) Acetylcholine Thank you for me Gustav.
Recommended publications
  • NS201C Anatomy 1: Sensory and Motor Systems
    NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent.
    [Show full text]
  • Cortex and Thalamus Lecture.Pptx
    Cerebral Cortex and Thalamus Hyperbrain Ch 2 Monica Vetter, PhD January 24, 2013 Learning Objectives: • Anatomy of the lobes of the cortex • Relationship of thalamus to cortex • Layers and connectivity of the cortex • Vascular supply to cortex • Understand the location and function of hypothalamus and pituitary • Anatomy of the basal ganglia • Primary functions of the different lobes/ cortical regions – neurological findings 1 Types of Cortex • Sensory (Primary) • Motor (Primary) • Unimodal association • Multimodal association - necessary for language, reason, plan, imagine, create Note: • Gyri • Sulci • Fissures • Lobes 2 The Thalamus is highly interconnected with the cerebral cortex, and handles most information traveling to or from the cortex. “Specific thalamic Ignore nuclei” – have well- names of defined sensory or thalamic nuclei for motor functions now - A few Other nuclei have will more distributed reappear later function 3 Thalamus Midbrain Pons Limbic lobe = cingulate gyrus Structure of Neocortex (6 layers) white matter gray matter Pyramidal cells 4 Connectivity of neurons in different cortical layers Afferents = inputs Efferents = outputs (reciprocal) brainstem etc Eg. Motor – Eg. Sensory – more efferent more afferent output input Cortico- cortical From Thalamus To spinal cord, brainstem etc. To Thalamus Afferent and efferent connections to different ….Depending on whether they have more layers of cortex afferent or efferent connections 5 Different areas of cortex were defined by differences in layer thickness, and size and
    [Show full text]
  • The Human Thalamus Is an Integrative Hub for Functional Brain Networks
    5594 • The Journal of Neuroscience, June 7, 2017 • 37(23):5594–5607 Behavioral/Cognitive The Human Thalamus Is an Integrative Hub for Functional Brain Networks X Kai Hwang, Maxwell A. Bertolero, XWilliam B. Liu, and XMark D’Esposito Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, California 94720 The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivityremainslargelyunknown.Byperforminggraph-theoreticanalysesonthalamocorticalfunctionalconnectivitydatacollected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multi- modal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. Key words: brain networks; diaschisis; functional connectivity; graph theory; thalamus Significance Statement The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate infor- mation processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions.
    [Show full text]
  • Basal Ganglia Anatomy, Physiology, and Function Ns201c
    Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub.
    [Show full text]
  • Facial Sensory Symptoms in Medullary Infarcts
    Arq Neuropsiquiatr 2005;63(4):946-950 FACIAL SENSORY SYMPTOMS IN MEDULLARY INFARCTS Adriana Bastos Conforto1, Fábio Iuji Yamamoto1, Cláudia da Costa Leite2, Milberto Scaff1, Suely Kazue Nagahashi Marie1 ABSTRACT - Objective: To investigate the correlation between facial sensory abnormalities and lesional topography in eight patients with lateral medullary infarcts (LMIs). Method: We reviewed eight sequen- tial cases of LMIs admitted to the Neurology Division of Hospital das Clínicas/ São Paulo University between J u l y, 2001 and August, 2002 except for one patient who had admitted in 1996 and was still followed in 2002. All patients were submitted to conventional brain MRI including axial T1-, T2-weighted and Fluid attenuated inversion-re c o v e ry (FLAIR) sequences. MRIs were evaluated blindly to clinical features to deter- mine extension of the infarct to presumed topographies of the ventral trigeminothalamic (VTT), lateral spinothalamic, spinal trigeminal tracts and spinal trigeminal nucleus. Results:S e n s o ry symptoms or signs w e re ipsilateral to the bulbar infarct in 3 patients, contralateral in 4 and bilateral in 1. In all of our cases with exclusive contralateral facial sensory symptoms, infarcts had medial extensions that included the VTT t o p o g r a p h y. In cases with exclusive ipsilateral facial sensory abnormalities, infarcts affected lateral and posterior bulbar portions, with slight or no medial extension. The only patient who presented bilateral facial symptoms had an infarct that covered both medial and lateral, in addition to the posterior re g i o n of the medulla. Conclusion: Our results show a correlation between medial extension of LMIs and pres- ence of contralateral facial sensory symptoms.
    [Show full text]
  • Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing
    cells Review Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing Alessandro Fiorenzano * , Edoardo Sozzi, Malin Parmar and Petter Storm Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; [email protected] (E.S.); [email protected] (M.P.); [email protected] (P.S.) * Correspondence: alessandro.fi[email protected]; Tel.: +46-462220549 Abstract: Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsy- chiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are Citation: Fiorenzano, A.; Sozzi, E.; not amenable to being reproduced in animal models. The establishment of human cell-based systems Parmar, M.; Storm, P. Dopamine combined with advanced computational single-cell transcriptomics holds great promise for decoding Neuron Diversity: Recent Advances the mechanisms underlying maturation and diversification of human DA neurons, and linking their and Current Challenges in Human Stem Cell Models and Single Cell molecular heterogeneity to functions in the midbrain.
    [Show full text]
  • Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G
    Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G. Jamieson, M.D. Weill Cornell Medicine, New York, NY The patient who presents with either acute or subacute confusion, in the absence of a clearly defined speech disorder and focality on neurological examination that would indicate an underlying mass lesion, needs to be evaluated for a multitude of neurological conditions. Many of the conditions that produce the recent onset of alteration in mental status, that ranges from mild confusion to florid delirium, may be due to infectious or inflammatory conditions that warrant acute intervention such as antimicrobial drugs, steroids or plasma exchange. However, some patients with recent onset of confusion have an underlying toxic-metabolic disorders indicating a specific diagnosis with need for appropriate treatment. The clinical presentations of some patients may indicate the diagnosis (e.g. hypoglycemia, chronic alcoholism) while the imaging patterns must be recognized to make the diagnosis in other patients. Toxic-metabolic disorders constitute a group of diseases and syndromes with diverse causes and clinical presentations. Many toxic-metabolic disorders have no specific neuroimaging correlates, either at early clinical stages or when florid symptoms develop. However, some toxic-metabolic disorders have characteristic abnormalities on neuroimaging, as certain areas of the central nervous system appear particularly vulnerable to specific toxins and metabolic perturbations. Areas of particular vulnerability in the brain include: 1) areas of high-oxygen demand (e.g. basal ganglia, cerebellum, hippocampus), 2) the cerebral white matter and 3) the mid-brain. Brain areas of high-oxygen demand are particularly vulnerable to toxins that interfere with cellular respiratory metabolism.
    [Show full text]
  • Spinal Cord Organization
    Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges.
    [Show full text]
  • Identification of Discrete Functional Subregions of the Human
    Identification of discrete functional subregions of the human periaqueductal gray Ajay B. Satputea,1, Tor D. Wagerb, Julien Cohen-Adadc, Marta Bianciardid, Ji-Kyung Choid, Jason T. Buhlee, Lawrence L. Waldd, and Lisa Feldman Barretta,f aDepartment of Psychology, Northeastern University, Boston, MA, 02115; bDepartment of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO 80309; cDepartment of Electrical Engineering, École Polytechnique de Montréal, Montreal, QC, Canada H3T 1J4; Departments of dRadiology and fPsychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129; and eDepartment of Psychology, Columbia University, New York, NY, 10027 Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved September 9, 2013 (received for review March 30, 2013) The midbrain periaqueductal gray (PAG) region is organized into Unfortunately however, standard fMRI is fundamentally lim- distinct subregions that coordinate survival-related responses ited in its resolution, making it uncertain which fMRI results lie during threat and stress [Bandler R, Keay KA, Floyd N, Price J in the PAG and which lie in other nearby nuclei. The overarching (2000) Brain Res 53 (1):95–104]. To examine PAG function in humans, issue is size and shape. The PAG is small and is shaped like a researchers have relied primarily on functional MRI (fMRI), but tech- hollow cylinder with an external diameter of ∼6 mm, a height of nological and methodological limitations have prevented research- ∼10 mm, and an internal diameter of ∼2–3 mm. The cerebral ers from localizing responses to different PAG subregions.
    [Show full text]
  • Auditory and Vestibular Systems Objective • to Learn the Functional
    Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.
    [Show full text]
  • The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety
    The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Taylor, Norman E. "The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety." eNeuro 6, 1 (January 2019): e0018-18.2019 © 2019 Taylor et al As Published http://dx.doi.org/10.1523/eneuro.0018-18.2019 Publisher Society for Neuroscience Version Final published version Citable link https://hdl.handle.net/1721.1/126481 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Confirmation Cognition and Behavior The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety Norman E. Taylor,1 JunZhu Pei,2 Jie Zhang,1 Ksenia Y. Vlasov,2 Trevor Davis,3 Emma Taylor,4 Feng-Ju Weng,2 Christa J. Van Dort,5 Ken Solt,5 and Emery N. Brown5,6 https://doi.org/10.1523/ENEURO.0018-18.2019 1University of Utah, Salt Lake City 84112, UT, 2Massachusetts Institute of Technology, Cambridge 02139, MA, 3Brigham Young University, Provo 84602, UT, 4University of Massachusetts, Lowell 01854, MA, 5Massachusetts General Hospital, Boston 02114, MA, and 6Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139 Abstract The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood.
    [Show full text]
  • Neuronal and Glial Factors Contributing to Sex Differences in Opioid Modulation of Pain
    www.nature.com/npp NEUROPSYCHOPHARMACOLOGY REVIEWS Neuronal and glial factors contributing to sex differences in opioid modulation of pain Dayna L. Averitt 1, Lori N. Eidson2, Hillary H. Doyle3 and Anne Z. Murphy3 Morphine remains one of the most widely prescribed opioids for alleviation of persistent and/or severe pain; however, multiple preclinical and clinical studies report that morphine is less efficacious in females compared to males. Morphine primarily binds to the mu opioid receptor, a prototypical G-protein coupled receptor densely localized in the midbrain periaqueductal gray. Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray, and its descending projections to the rostral ventromedial medulla and spinal cord, as an essential descending inhibitory circuit mediating opioid-based analgesia. Remarkably, the majority of studies published over the following 30 years were conducted in males with the implicit assumption that the anatomical and physiological characteristics of this descending inhibitory circuit were comparable in females; not surprisingly, this is not the case. Several factors have since been identified as contributing to the dimorphic effects of opioids, including sex differences in the neuroanatomical and neurophysiological characteristics of the descending inhibitory circuit and its modulation by gonadal steroids. Recent data also implicate sex differences in opioid metabolism and neuroimmune signaling as additional contributing factors. Here we cohesively present these lines
    [Show full text]