Statistics, Probability and Chaos Author(S): L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et. -
THE LORENZ SYSTEM Math118, O. Knill GLOBAL EXISTENCE
THE LORENZ SYSTEM Math118, O. Knill GLOBAL EXISTENCE. Remember that nonlinear differential equations do not necessarily have global solutions like d=dtx(t) = x2(t). If solutions do not exist for all times, there is a finite τ such that x(t) for t τ. j j ! 1 ! ABSTRACT. In this lecture, we have a closer look at the Lorenz system. LEMMA. The Lorenz system has a solution x(t) for all times. THE LORENZ SYSTEM. The differential equations Since we have a trapping region, the Lorenz differential equation exist for all times t > 0. If we run time _ 2 2 2 ct x_ = σ(y x) backwards, we have V = 2σ(rx + y + bz 2brz) cV for some constant c. Therefore V (t) V (0)e . − − ≤ ≤ y_ = rx y xz − − THE ATTRACTING SET. The set K = t> Tt(E) is invariant under the differential equation. It has zero z_ = xy bz : T 0 − volume and is called the attracting set of the Lorenz equations. It contains the unstable manifold of O. are called the Lorenz system. There are three parameters. For σ = 10; r = 28; b = 8=3, Lorenz discovered in 1963 an interesting long time behavior and an EQUILIBRIUM POINTS. Besides the origin O = (0; 0; 0, we have two other aperiodic "attractor". The picture to the right shows a numerical integration equilibrium points. C = ( b(r 1); b(r 1); r 1). For r < 1, all p − p − − of an orbit for t [0; 40]. solutions are attracted to the origin. At r = 1, the two equilibrium points 2 appear with a period doubling bifurcation. -
Thermodynamic Properties of Coupled Map Lattices 1 Introduction
Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Role of Nonlinear Dynamics and Chaos in Applied Sciences
v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. -
Tom W B Kibble Frank H Ber
Classical Mechanics 5th Edition Classical Mechanics 5th Edition Tom W.B. Kibble Frank H. Berkshire Imperial College London Imperial College Press ICP Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Kibble, T. W. B. Classical mechanics / Tom W. B. Kibble, Frank H. Berkshire, -- 5th ed. p. cm. Includes bibliographical references and index. ISBN 1860944248 -- ISBN 1860944353 (pbk). 1. Mechanics, Analytic. I. Berkshire, F. H. (Frank H.). II. Title QA805 .K5 2004 531'.01'515--dc 22 2004044010 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2004 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore. To Anne and Rosie vi Preface This book, based on courses given to physics and applied mathematics stu- dents at Imperial College, deals with the mechanics of particles and rigid bodies. -
A Simple Scalar Coupled Map Lattice Model for Excitable Media
This is a repository copy of A simple scalar coupled map lattice model for excitable media. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74667/ Monograph: Guo, Y., Zhao, Y., Coca, D. et al. (1 more author) (2010) A simple scalar coupled map lattice model for excitable media. Research Report. ACSE Research Report no. 1016 . Automatic Control and Systems Engineering, University of Sheffield Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S. A. Billings Research Report No. 1016 Department of Automatic Control and Systems Engineering The University of Sheffield Mappin Street, Sheffield, S1 3JD, UK 8 September 2010 A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S.A. -
Symmetric Encryption Algorithms Using Chaotic and Non-Chaotic Generators: a Review
Journal of Advanced Research (2016) 7, 193–208 Cairo University Journal of Advanced Research REVIEW Symmetric encryption algorithms using chaotic and non-chaotic generators: A review Ahmed G. Radwan a,b,*, Sherif H. AbdElHaleem a, Salwa K. Abd-El-Hafiz a a Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt b Nanoelectronics Integrated Systems Center (NISC), Nile University, Cairo, Egypt GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Article history: This paper summarizes the symmetric image encryption results of 27 different algorithms, which Received 27 May 2015 include substitution-only, permutation-only or both phases. The cores of these algorithms are Received in revised form 24 July 2015 based on several discrete chaotic maps (Arnold’s cat map and a combination of three general- Accepted 27 July 2015 ized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals Available online 1 August 2015 and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients * Corresponding author. Tel.: +20 1224647440; fax: +20 235723486. E-mail address: [email protected] (A.G. Radwan). Peer review under responsibility of Cairo University. Production and hosting by Elsevier http://dx.doi.org/10.1016/j.jare.2015.07.002 2090-1232 ª 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University. 194 A.G. Radwan et al. between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Keywords: Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute Permutation matrix of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms Symmetric encryption include a set of new image encryption algorithms based on non-chaotic generators, either using Chess substitution only (using fractals) and permutation only (chess-based) or both. -
Chaos: the Mathematics Behind the Butterfly Effect
Chaos: The Mathematics Behind the Butterfly E↵ect James Manning Advisor: Jan Holly Colby College Mathematics Spring, 2017 1 1. Introduction A butterfly flaps its wings, and a hurricane hits somewhere many miles away. Can these two events possibly be related? This is an adage known to many but understood by few. That fact is based on the difficulty of the mathematics behind the adage. Now, it must be stated that, in fact, the flapping of a butterfly’s wings is not actually known to be the reason for any natural disasters, but the idea of it does get at the driving force of Chaos Theory. The common theme among the two is sensitive dependence on initial conditions. This is an idea that will be revisited later in the paper, because we must first cover the concepts necessary to frame chaos. This paper will explore one, two, and three dimensional systems, maps, bifurcations, limit cycles, attractors, and strange attractors before looking into the mechanics of chaos. Once chaos is introduced, we will look in depth at the Lorenz Equations. 2. One Dimensional Systems We begin our study by looking at nonlinear systems in one dimen- sion. One of the important features of these is the nonlinearity. Non- linearity in an equation evokes behavior that is not easily predicted due to the disproportionate nature of inputs and outputs. Also, the term “system”isoftenamisnomerbecauseitoftenevokestheideaof asystemofequations.Thiswillbethecaseaswemoveourfocuso↵ of one dimension, but for now we do not want to think of a system of equations. In this case, the type of system we want to consider is a first-order system of a single equation. -
The Lorenz System
The Lorenz system James Hateley Contents 1 Formulation 2 2 Fixed points 4 3 Attractors 4 4 Phase analysis 5 4.1 Local Stability at The Origin....................................5 4.2 Global Stability............................................6 4.2.1 0 < ρ < 1...........................................6 4.2.2 1 < ρ < ρh ..........................................6 4.3 Bifurcations..............................................6 4.3.1 Supercritical pitchfork bifurcation: ρ = 1.........................7 4.3.2 Subcritical Hopf-Bifurcation: ρ = ρh ............................8 4.4 Strange Attracting Sets.......................................8 4.4.1 Homoclinic Orbits......................................9 4.4.2 Poincar´eMap.........................................9 4.4.3 Dynamics at ρ∗ ........................................9 4.4.4 Asymptotic Behavior..................................... 10 4.4.5 A Few Remarks........................................ 10 5 Numerical Simulations and Figures 10 5.1 Globally stable , 0 < ρ < 1...................................... 10 5.2 Pitchfork Bifurcation, ρ = 1..................................... 12 5.3 Homoclinic orbit........................................... 12 5.4 Transient Chaos........................................... 12 5.5 Chaos................................................. 14 5.5.1 A plot for ρh ......................................... 14 5.6 Other Notable Orbits........................................ 16 5.6.1 Double Periodic Orbits................................... 16 5.6.2 Intermittent -
SPATIOTEMPORAL CHAOS in COUPLED MAP LATTICE Itishree
SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to certify that the project thesis entitled ” Spatiotemporal chaos in Cou- pled Map Lattice ” being submitted by Itishree Priyadarshini in partial fulfilment to the requirement of the one year project course (PH 592) of MSc Degree in physics of National Institute of Technology, Rourkela has been carried out under my super- vision. The result incorporated in the thesis has been produced by developing her own computer codes. Prof. Biplab Ganguli Dept. of Physics National Institute of Technology Rourkela - 769008 1 ACKNOWLEDGEMENT I would like to acknowledge my guide Prof. Biplab Ganguli for his help and guidance in the completion of my one-year project and also for his enormous moti- vation and encouragement. I am also very much thankful to research scholars whose encouragement and support helped me to complete my project. 2 ABSTRACT The sensitive dependence on initial condition, which is the essential feature of chaos is demonstrated through simple Lorenz model. Period doubling route to chaos is shown by analysis of Logistic map and other different route to chaos is discussed. Coupled map lattices are investigated as a model for spatio-temporal chaos. Diffusively coupled logistic lattice is studied which shows different pattern in accordance with the coupling constant and the non-linear parameter i.e. frozen random pattern, pattern selection with suppression of chaos , Brownian motion of the space defect, intermittent collapse, soliton turbulence and travelling waves. 3 Contents 1 Introduction 3 2 Chaos 3 3 Lorenz System 4 4 Route to Chaos 6 4.1 PeriodDoubling.............................