Diversity, Host Ranges, and Potential Drivers of Speciation Among the Inquiline Enemies of Oak Gall Wasps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present. -
Taxonomic Notes and Type Designations of Gall Inducing Cynipid Wasps Described by G.Mayr (Insecta: Hymenoptera: Cynipidae)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Bechtold M., Melika George Artikel/Article: Taxonomic notes and type designations of gall inducing cynipid wasps described by G.Mayr (Insecta: Hymenoptera: Cynipidae). 327-339 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 327 - 339 Wien, Dezember 2001 Taxonomic notes and type designations of gall inducing cynipid wasps described by G. Mayr (Insecta: Hymenoptera: Cynipidae) G. Melika & M. Bechtold* Abstract Lectotypes for twelve of Mayr's cynipid gall wasp species (Hymenoptera: Cynipidae: Cynipinae) are desi- gnated. From twenty cynipid gall wasp species, described by Mayr, seven have already been synonymized, and thirteen species are still valid. Andricus insana (WESTWOOD, 1837) syn.n. is a new synonym of Andricus quercustozae (Bosc, 1792). Key words: Cynipidae, gall wasps, Hymenoptera, lectotype designation, Gustav Mayr, new synonymy, taxonomy. Zusammenfassung Lectotypen für zwölf der von Mayr beschriebenen Gallwespenarten (Hymenoptera: Cynipidae: Cynipinae) werden designiert. Mayr hat zwanzig Gallwespenarten beschrieben, davon sind sieben bereits synonymi- siert worden, dreizehn Arten sind noch gültig. Andricus insana (WESTWOOD, 1837) syn.n. ist ein neues Synonym von Andricus quercustozae (Bosc, 1792). Introduction Gustav Mayr, a famous Austrian entomologist, described eleven genera of gall inducing Cynipidae and twenty species from twelve genera (Hymenoptera: Cynipoidea). Seven of them have already been synonymized, while thirteen species are still valid. However, he never designated types for his newly described species. All the specimens are syn- or cotypes and usually these specimens were marked with "Type" or even not so. -
Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn
105 NOMINA INSECTA NEARCTICA Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn. Monoplopus Konow 1896 Syn. Neateuchopus Benson 1935 Syn. Haplocephus Benson 1935 Syn. Microcephus Benson 1935 Syn. Calameuta clavata Norton 1869 (Phylloecus) Trachelus tabidus Fabricius 1775 (Sirex) Sirex macilentus Fabricius 1793 Syn. Cephus Latreille 1802 Cephus mandibularis Lepeletier 1823 Syn. Astatus Jurine 1801 Unav. Cephus nigritus Lepeletier 1823 Syn. Perinistilus Ghigi 1904 Syn. Cephus vittatus Costa 1878 Syn. Peronistilomorphus Pic 1916 Syn. Calamenta [sic] johnsoni Ashmead 1900 Syn. Fossulocephus Pic 1917 Syn. Pseudocephus Dovnar-Zapolskii 1931 Syn. Cephus cinctus Norton 1872 (Cephus) CERAPHRONIDAE Cephus occidentalis Riley and Marlatt 1891 Syn. Cephus graenicheri Ashmead 1898 Syn. Cephus pygmaeus Linnaeus 1766 (Sirex) Tenthredo longicornis Geoffroy 1785 Syn. Aphanogmus Thomson 1858 Tenthredo polygona Gmelin 1790 Syn. Banchus spinipes Panzer 1801 Syn. Aphanogmus bicolor Ashmead 1893 (Aphanogmus) Astatus floralis Klug 1803 Syn. Aphanogmus claviger Kieffer 1907 Syn. Banchus viridator Fabricius 1804 Syn. Ceraphron reitteri Kieffer 1907 Syn. Cephus subcylindricus Gravenhorst 1807 Syn. Aphanogmus canadensis Whittaker 1930 (Aphanogmus) Cephus leskii Lepeletier 1823 Syn. Aphanogmus dorsalis Whittaker 1930 (Aphanogmus) Cephus atripes Stephens 1835 Syn. Aphanogmus floridanus Ashmead 1893 (Aphanogmus) Cephus flavisternus Costa 1882 Syn. Aphanogmus fulmeki Szelenyi 1940 (Aphanogmus) Cephus clypealis Costa 1894 Syn. Aphanogmus parvulus Roberti 1954 Syn. Cephus notatus Kokujev 1910 Syn. Aphanogmus fumipennis Thomson 1858 (Aphanogmus) Cephus tanaiticus Dovnar-Zapolskii 1926 Syn. Aphanogmus grenadensis Ashmead 1896 Syn. Aphanogmus formicarius Kieffer 1905 Syn. Hartigia Schiodte 1838 Ceraphron formicarum Kieffer 1907 Syn. Cerobractus Costa 1860 Syn. Aphanogmus clavatus Kieffer 1907 Syn. Macrocephus Schlechtendal 1878 Syn. Cerphron armatus Kieffer 1907 Syn. Cephosoma Gradl 1881 Syn. -
The Beat Sheet
Subscribe Past Issues Translate RSS View this email in your browser The Beat Sheet Newsletter of the Frost Entomological Museum Fall 2020 Note: Our public museum is still closed due to COVID-19 safety precautions and Penn State regulations. We will let you know when we receive more information. Thank you for your patience! New Species Discovery? Oak gall wasps (Cynipoidea) have been the dominant research interest of Frost personnel over the past few months. Through regular monitoring of local oak populations, we've found some truly striking galls and made surprising observations along the way. Most exciting, perhaps, is that there seem to be 3 gall inquilines that have been reared from Philonix nigra and Callirhytis favosa galls that do not key to any known species nor do they match any known species descriptions. Perhaps they are new to science! We still need to verify this result with a comprehensive look at their morphology and by sequencing their DNA, but the project already is yielding exciting discoveries. Above: Gall created by Philonix nigra (left) and Callirhytis favosa (right) that unknown inquilines were reared from. Guide to the Gall Wasps of the Eastern US — Coming soon! Museum Director Andy Deans has taken sabbatical this fall to devote time and energy into developing a resource that will serve as a guide to oak galls wasps of the Eastern US. The current sources, mainly books by Ephraim Felt (1940) and Weld (1959), need a lot of updating and a better, more field guide-like layout. He’s compiling species’s natural history data, including seasonal phenology, host use, gall characteristics, and differences in biology and behavior of the alternating generations where they occur. -
A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction. -
Description of a New Species of Saphonecrus Dalla Torre & Kieffer from China (Hymenoptera: Cynipidae: Synergini)
© Entomologica Fennica. 11 April 2014 Description of a new species of Saphonecrus Dalla Torre & Kieffer from China (Hymenoptera: Cynipidae: Synergini) Juli Pujade-Villar, Yiping Wang* & Rui Guo Pujade-Villar, J., Wang, Y. & Guo, R. 2014: Description of a new species of Saphonecrus Dalla Torre & Kieffer from China (Hymenoptera: Cynipidae: Synergini). — Entomol. Fennica 25: 43–48. A new inquiline species of Saphonecrus Dalla Torre & Kieffer, S. reticulatus sp. n., is described with its host gall. This species emerged from stem galls on Quercus aliena var. acutiserrata (Fagaceae). Diagnosis, distribution, and bio- logy of the new species are included and the most important morphological char- acters are illustrated. J. Pujade-Villar, Department of Animal Biology, Barcelona University, Barce- lona 08028, Spain Y. Wang, College of Forest and Biotechnology, Zhejiang Agricultural and For- estry University, Lin’an 311300, China; *Corresponding author’s e-mail: [email protected] R. Guo, Administration Bureau of Zhejiang Qingliangfeng National Nature Re- serve, Lin’an 311300, China Received 18 April 2013, accepted 12 August 2013 1. Introduction though the systematic status of the genus has long been considered to be in need of revision (Pujade- Saphonecrus is an inquiline genus associated Villar & Nieves-Aldrey 1990, Pujade-Villar et al. with oak gallwasps (Cynipini). Inquilines have 2003, Melika 2006, Penzes et al. 2009, 2012), the retained the ability to modify the gall tissue di- changes are not formally published for this. We rectly surrounding them into the characteristic report a new species of Saphonecrus according to nutritive tissue also found in the larval chambers the current definition of the genus. -
Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected]
Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected] Michael S. Engel University of Kansas, Lawrence David A. Grimaldi American Museum of Natural History Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Liu, Zhiwei; Engel, Michael S.; and Grimaldi, David A., "Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea)" (2007). Faculty Research & Creative Activity. 197. http://thekeep.eiu.edu/bio_fac/197 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3583, 48 pp., 27 figures, 4 tables September 6, 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) ZHIWEI LIU,1 MICHAEL S. ENGEL,2 AND DAVID A. GRIMALDI3 CONTENTS Abstract . ........................................................... 1 Introduction . ....................................................... 2 Systematic Paleontology . ............................................... 3 Superfamily Cynipoidea Latreille . ....................................... 3 -
Chemical Deception Among Ant Social Parasites
Current Zoology 60 (1): 62–75, 2014 Chemical deception among ant social parasites Rhian M. GUILLEM1, Falko DRIJFHOUT2, Stephen J. MARTIN3* 1 Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK 2 Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, ST5 5BG, UK 3 School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK Abstract Deception is widespread throughout the animal kingdom and various deceptive strategies are exemplified by social parasites. These are species of ants, bees and wasps that have evolved to invade, survive and reproduce within a host colony of another social species. This is achieved principally by chemical deception that tricks the host workers into treating the invading parasite as their own kin. Achieving levels of acceptance into typically hostile host colonies requires an amazing level of decep- tion as social insects have evolved complex species- and colony-specific recognition systems. This allows the detection of for- eigners, both hetero- and con-specific. Therefore, social parasitic ants not only have to overcome the unique species recognition profiles that each ant species produces, but also the subtle variations in theses profiles which generate the colony-specific profiles. We present data on the level of chemical similarity between social parasites and their hosts in four different systems and then discuss these data in the wider context with previous studies, especially in respect to using multivariate statistical methods when looking for differences in these systems [Current Zoology 60 (1): 6275, 2014]. Keywords Mimicry, Social parasites, Cuticular hydrocarbons, Multivariate statistics Deception by mimicking the pattern of another spe- 1968). -
Torymus Sinensis Against the Chestnut Gall Wasp Dryocosmus Kuriphilus in the Canton Ticino, Switzerland
| January 2011 Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland Authors Aebi Alexandre, Agroscope ART Schoenenberger Nicola, Tulum SA and Bigler Franz, Agroscope ART Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 1 Zürich/Caslano, January 2011 Authors’ affiliation: Alexandre Aebi and Franz Bigler Nicola Schoenenberger Agroscope Reckenholz-Tänikon TULUM SA Research Station ART Via Rompada 40 Biosafety 6987 Caslano Reckenholzstrasse 191 Switzerland 8046 Zürich Tel: +41 91 606 6373 Switzerland Fax: +41 44 606 6376 Tel: +41 44 377 7669 [email protected] Fax: +41 44 377 7201 [email protected] This work was financed by the Swiss Federal Office for the Environment (FOEN) This work was done in collaboration with B. Bellosi and E. Schaltegger (TULUM SA) Cover figure: Empty chestnut gall in Stabio, February 2010 (Picture:TULUM SA) All maps used in figures and appendices (except Fig. 6): ©swisstopo, license number: DV053809.1 Map in figure 6: © Istituto Geografico, De Agostini 1982–1988 ISBN 978-3-905733-20-4 © 2010 ART 2 Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 Table of contents Table of contents Abstract 5 1. Introduction 6 2. Mission and methods 7 3. Presence and degree of infestation of Dryocosmus kuriphilus in Switzerland 9 4. Invasion corridors of Dryocosmus kuriphilus towards Switzerland 11 5. Potential economic and ecological damage caused by Dryocosmus kuriphilus in Switzerland 14 6. Release of the parasitoid Torymus sinensis in the Piedmont Region, Italy 17 7. Potential benefits and damage due to the release of Torymus sinensis 18 8. -
The Adaptive Significance of Inquiline Parasite Workers
Received 5December 2002 Accepted 29January 2003 Publishedonline 30April 2003 Theadaptive significance of inquilineparasite workers Seirian Sumner * ,David R.Nash and Jacobus J.Boomsma Departmentof Population Ecology, Zoological Institute, University ofCopenhagen, Universitetsparken 15, DK-2100Copenhagen, Denmark Social parasites exploit thesocially managed resourcesof their host’s society.Inquiline social parasites are dependenton their hostthroughout their life cycle,and so many ofthe traits inherited from their free-living ancestorare removedby natural selection.One trait that is commonly lostis theworker caste, thefunctions of which are adequately fulfilled by hostworkers. The fewinquiline parasites that have retaineda worker casteare thought tobe at atransitional stage in theevolution of social parasitism, and their worker castesare consideredvestigial andnon-adaptive. However, this idea has notbeen tested. Furthermore, whetherinquiline workershave anadaptive role outsidethe usual worker repertoire of foraging, broodcare andcolony maintenance has notbeen examined. In this paper, wepresentdata that suggestthat workersof the inquiline ant Acromyrmexinsinuator play avital role in ensuringthe parasite’ s fitness.We show that thepresence of these parasite workershas apositive effecton the production of parasite sexualsand a negative effecton the production of host sexuals. This suggeststhat inquiline workersplay avital role in suppressinghost queen reproduction, thus promoting therearing ofparasite sexuals.To ourknowledge, these are thefirst -
Download PDF File
Myrmecological News 20 7-14 Vienna, September 2014 Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae) Fabrice SAVARIT & Renée FÉNÉRON Abstract Inquilinism is an extreme form of social parasitism where the parasite permanently depends on its host. This parasitism is widespread among Formicinae and Myrmicinae ants but rare in other subfamilies, like Ectatomminae where Ectatomma parasiticum FEITOSA & FRESNEAU, 2008 is the sole inquiline described so far. This species is genetically and morpholo- gically very similar to its host, E. tuberculatum (OLIVIER, 1792), and uses its worker force to produce exclusively sexuals. During their life cycle, E. parasiticum queens enter into established host colonies and cohabit with the resident queens over an extended period of time. However, previous experiments in the laboratory have shown that some parasites are attacked by host workers, suggesting that their social integration into host colonies is incomplete or unstable. We thus investigate how the chemical cues of the parasites relate to the host's recognition system. For this, we compare the cuticu- lar hydrocarbon profiles of parasites, host queens and host workers using solid-phase microextraction. Although over- lapping, the chemical profiles of both species are distinct. Parasites have no specific compounds but a reduced total amount of cuticular hydrocarbons compared with hosts. We suggest that E. parasiticum uses an imperfect chemical mimicry stra- tegy as it is well-discriminated by its host species. Key words: Chemical strategy, cuticular hydrocarbons, inquiline ants, Ectatomma parasiticum, Ectatomma tuberculatum. Myrmecol. News 20: 7-14 (online 17 February 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 14 June 2013; revision received 12 November 2013; accepted 12 November 2013 Subject Editor: Falko P. -
UNCORRECTED PROOF A6 2 Plant Health Diagnostic National Reference Laboratory, National Food Chain Safety Oice, A7 Budaörsi U
Journal : SmallCondensed 10531 Article No : 1930 Pages : 27 MS Code : 1930 Dispatch : 11-1-2020 Biodiversity and Conservation https://doi.org/10.1007/s10531-020-01930-w 1 ORIGINAL PAPER 2 Time-since ire and cynipid gall wasp assemblages on oaks 3 James T. Cronin1,4 · George Melika2 · Warren G. Abrahamson3 4 Received: 1 August 2019 / Revised: 2 January 2020 / Accepted: 8 January 2020 Author Proof 5 © Springer Nature B.V. 2020 6 Abstract 7 Fires are ubiquitous features of many terrestrial ecosystems and can greatly impact the AQ1 8 structure and evolution of plant communities. However, much less is known about how ire 9 history impacts higher trophic levels. Using detailed records on the history and intensity of 10 ires at the Archbold Biological Station (ABS) in central Florida, USA, we examined how 11 time-since-ire afects the cynipid gall wasp assemblage (Hymenoptera: Cynipidae) associ- 12 ated with four oak species (Quercus) that are dominant components of the plant commu- 13 nity in this region. Cynipid abundance, richness and diversity were quantiied from 1249 14 oak trees/shrubs in 20 sites that varied in time-since-ire from 1.5 to 91 years. Among all 15 sites and oaks, we found 24 species of cynipids and there was very little species overlap 16 among oak species, even within the same site. Gall abundance increased with time-since- 17 ire and was correlated with tree height, suggesting that available host material or plant 18 architecture may be a primary driver of cynipid recovery. Within 3 years of a ire, 14 of 19 the 23 cynipid species were detected among the sites, and by seven years since ire, all but 20 two species could be detected.