Polyunsaturated Fatty Acids in Fish Tissues More Closely Resemble Algal Than Terrestrial Diet Sources

Total Page:16

File Type:pdf, Size:1020Kb

Polyunsaturated Fatty Acids in Fish Tissues More Closely Resemble Algal Than Terrestrial Diet Sources Hydrobiologia (2021) 848:371–383 https://doi.org/10.1007/s10750-020-04445-1 (0123456789().,-volV)( 0123456789().,-volV) PRIMARY RESEARCH PAPER Polyunsaturated fatty acids in fish tissues more closely resemble algal than terrestrial diet sources Nadine Ebm . Fen Guo . Michael T. Brett . Stuart E. Bunn . Martin J. Kainz Received: 15 July 2020 / Revised: 13 October 2020 / Accepted: 15 October 2020 / Published online: 16 November 2020 Ó The Author(s) 2020 Abstract The River Continuum Concept implies which is essential for neural development in fish and that consumers in headwater streams have greater other vertebrates. We sampled subalpine streams to dietary access to terrestrial basal resources, but recent investigate how the PUFA composition of neural studies have highlighted the dietary importance of (brain and eyes), muscle, and liver tissues of fresh- high-quality algae. Algae provide consumers with water fish is related to their potential diets (macroin- physiologically important omega-3 (n-3) polyunsatu- vertebrates, epilithon, fresh and conditioned terrestrial rated fatty acids (PUFA), particularly eicosapen- leaves). The PUFA composition of consumers was taenoic acid (EPA). However, terrestrial plants and more similar to epilithon than to terrestrial leaves. most benthic stream algae lack the long-chain (LC) Storage lipids of eyes most closely resembled dietary n-3 PUFA docosahexaenoic acid (DHA, 22:6n-3), PUFA (aquatic invertebrates and algae). However, DHA and arachidonic acid (ARA, 20:4n-6) were not directly available in the diet but abundant in organs. Handling editor: Michael Power This implies that algal PUFA were selectively retained Electronic supplementary material The online version of or were produced internally via enzymatic PUFA this article (https://doi.org/10.1007/s10750-020-04445-1) con- conversion by aquatic consumers. This field study tains supplementary material, which is available to authorized demonstrates the nutritional importance of algal users. N. Ebm Á M. J. Kainz (&) M. T. Brett WasserCluster Lunz – Inter-university Center for Aquatic Department of Civil and Environmental Engineering, Ecosystem Studies, 3293 Lunz Am See, Austria University of Washington, Seattle, WA 98195, USA e-mail: [email protected] e-mail: [email protected] N. Ebm S. E. Bunn e-mail: [email protected] Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia N. Ebm e-mail: s.bunn@griffith.edu.au Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria M. J. Kainz Department for Biomedical Research, Danube University F. Guo Krems, Krems an der Donau, Austria Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China e-mail: [email protected] 123 372 Hydrobiologia (2021) 848:371–383 PUFA for neural organs in aquatic consumers of 1996; Tocher et al., 2001; Murray et al., 2014). These headwater regions. fish are able to transform dietary ALA via stearidonic acid (SDA) and EPA to DHA, but direct incorporation Keywords Stream food webs Á Food quality Á of dietary DHA is preferred by fish as it reduces the Headwaters Á Fish brain Á Fish eyes Á Docosahexaenoic more energy-demanding endogenous production path- acid way. However, in contrast to such experimental studies, little is known about the PUFA pathways to and within fish in natural ecosystems deprived in DHA (Gladyshev et al., 2018), and especially how fish in Introduction streams acquire their PUFA and subsequently allocate these FA to different organs, including neural organs At the base of aquatic food webs, primary producers, (Guo et al., 2017). e.g., microalgae, provide consumers with dietary Neural organs, e.g., brain and eyes, are rich in DHA nutrients, including essential polyunsaturated fatty (Mourente & Tocher, 1998; Farkas et al., 2000; acids (PUFA), that are crucial constituents of cell Stoknes et al., 2004), which is key for proper membranes (e.g., phospholipids). A steady supply of functioning of these organs and eventually optimal dietary PUFA to aquatic consumers, particularly fish physiological performance. Common stream fish omega-3 (n-3) long-chain (LC) PUFA, such as eicos- in alpine headwaters (e.g., salmonids and European apentaenoic acid (EPA; 20:5n-3) and docosahex- bullhead) are visual predators that prey mostly on aenoic acid (DHA; 22:6n-3), is critical as these fatty moving or drifting invertebrates oftentimes at night acids (FA) support somatic growth and reproduction (Elliott, 1973; Mills & Mann, 1983). A reduced visual (Mu¨ller-Navarra et al., 2000; Brett et al., 2009). performance (Bell et al., 1995) or learning ability However, most aquatic consumers have limited abil- (Lund et al., 2014) of fish due to LC-PUFA-poor diets ities to synthesize EPA and DHA and thus have to take can reduce feeding success, predator avoidance (e.g., up these biomolecules directly from their diets (Brett escape latency, swimming speed) and other behavioral &Mu¨ller-Navarra, 1997; Arts et al., 2009; Torres- traits, e.g., schooling behavior (Ishizaki et al., 2001). Ruiz et al., 2010). Vascular plants synthesize the short- Despite the fact that neural organs have the highest chain PUFA: alpha-linolenic acid (ALA; 18:3n-3) and lipid contents and are the most energy-demanding the n-6 PUFA linoleic acid (LA, 18:2n-6), but tissues in animals, our current knowledge about generally lack EPA and DHA (Brett et al., 2009; but energy flows in aquatic food webs is primarily derived see Napier, 2006). Although epilithic algae (especially from studies on fish muscle and liver tissues (Volk & diatoms) in freshwater ecosystems are comparatively Kiffney, 2012; Kainz et al., 2017; Sushchik et al., rich in EPA, they are low in DHA (Brett et al., 2009; 2018). Previous research indicated that FA in neutral Hixson et al., 2015; Guo et al., 2018). However, DHA lipids (NL) of fish muscles, such as triacylglycerols is essential for all vertebrates including freshwater (TAG), reflect those from the diet, while FA in the fishes (Ahlgren et al., 1994; Guo et al., 2017) where it polar lipids (PL) of fish muscles are driven by is associated with high membrane fluidity (e.g., signal taxonomy (Iverson 2009; Sushchik et al., 2020). Total transduction, neurotransmission or hormone regula- lipids and TAG contents vary among fish organs tion, Farkas et al., 2000), anti-inflammatory and— (Tocher & Harvie, 1988; Budge et al., 2006; Hong oxidative effects (e.g., neuroprotection, Bazan, 2005), et al., 2014) and thus different organs may vary in proper neural development (cognitive performance, correspondence to dietary FA. Lund et al., 2014), and sensory functioning (visual Most vertebrate and fish brains consist mainly of PL acuity, Bell et al., 1995). (Soengas & Aldegunde, 2002), which are rich in DHA In contrast to marine fish (Agaba et al., 2005; (Tocher & Harvie, 1988; Iverson, 2009), making them Tocher et al., 2006; Mohd-Yusof et al., 2010), indispensable for cell functionality and relatively previous studies have reported that enzymatic conver- stable to dietary lipid intake. In contrast, fish eyes sions to LC-PUFA are functional in some freshwater are rich in TAG (Mourente et al., 1991; Geurden et al., fish (e.g., Oncorhynchus mykiss (Walbaum, 1792), 1998; Stoknes et al., 2004) and thus eye lipids may Salvelinus alpinus (Linnaeus, 1758), Buzzi et al., reflect dietary PUFA sources better than brain lipids 123 Hydrobiologia (2021) 848:371–383 373 (Brodtkorb et al., 1997). Bell et al. (1995) demon- parameter (N-NO3, N-NH4, P-PO4), soluble reactive strated that DHA-poor diets resulted in DHA-deficit phosphorus (SRP), and dissolved organic matter retina membranes with impaired vision under natural (DOM) concentrations in these study streams were light intensities. It is thus important to understand how reported in a previous study (Guo et al., 2018). lipid classes in neural organs are affected by dietary FA. However, this has not been tested yet for stream Sample collection fish which receive very little DHA directly from organisms at the base of the food chain. Potential dietary resources for fishes, including Motivated by the ambiguities outlined above, we epilithon, conditioned terrestrial leaves, and aquatic designed a field study to investigate the PUFA invertebrates were collected in October 2016. Condi- distribution in freshwater fish and their potential diet tioned leaves (submerged, senescent, and brownish sources in subalpine streams. We compared the PUFA leaves of various vascular plant species) were col- composition of various fish organs, i.e., muscle, liver, lected from streams). Epilithon from each of the brain, and eyes, with PUFA of potential diet sources sampling sites was transferred into sample containers (terrestrial plants, benthic algae and macroinverte- from small cobbles using soft brushes and inverte- brates), and also explored the FA distribution of brates were picked from rocks. The taxonomic com- salmonid brain and eyes in an effort to discern how position of epilithon and periphyton (biofilm on different lipid classes (NL versus PL) of these neural submerged leaves) was not examined because we organs are affected by dietary PUFA sources. We were primarily interested in their dietary and bio- tested the hypotheses that, (1) the PUFA composition chemical composition (Guo et al., 2018). Fresh leaves of stream consumers (macroinvertebrates and fish) is were picked directly from riparian vegetation in generally more similar to epilithon than to the leaves summer (July
Recommended publications
  • Cottus Poecilopus Heckel, 1836, in the River Javorin- Ka, the Tatra
    Oecologia Montana 2018, Cottus poecilopus Heckel, 1836, in the river Javorin- 27, 21-26 ka, the Tatra mountains, Slovakia M. JANIGA, Jr. In Tatranská Javorina under Muráň mountain, a small fish nursery was built by Christian Kraft von Institute of High Mountain Biology University of Hohenlohe around 1930. The most comprehensive Žilina, Tatranská Javorina 7, SK-059 56, Slovakia; studies on fish from the Tatra mountains were writ- e-mail:: [email protected] ten by professor Václav Dyk (1957; 1961), Dyk and Dyková (1964a,b; 1965), who studied altitudinal distribution of fish, describing the highest points where fish were found. His studies on fish were likely the most complex studies of their kind during that period. Along with his wife Sylvia, who illus- Abstract. This study focuses on the Cottus poe- trated his studies, they published the first realistic cilopus from the river Javorinka in the north-east studies on fish from the Tatra mountains including High Tatra mountains, Slovakia. The movement the river Javorinka (Dyk and Dyková 1964a). Feri- and residence of 75 Alpine bullhead in the river anc (1948) published the first Slovakian nomenclature were monitored and carefully recorded using GPS of fish in 1948. Eugen K. Balon (1964; 1966) was the coordinates. A map representing their location in next famous ichthyologist who became a recognised the river was generated. This data was collected in expert in the fish fauna of the streams of the Tatra the spring and summer of 2016 and in the autumn mountains, the river Poprad, and various high moun- of 2017. Body length and body weight of 67 Alpine tain lakes.
    [Show full text]
  • Trophic Relationships in Dutch Reservoirs Recently Invaded by Ponto-Caspian Species: Insights from Fish Trends and Stable Isotope Analysis
    Aquatic Invasions (2019) Volume 14, Issue 2: 280–298 CORRECTED PROOF Research Article Trophic relationships in Dutch reservoirs recently invaded by Ponto-Caspian species: insights from fish trends and stable isotope analysis Yvon J.M. Verstijnen1,*, Esther C.H.E.T. Lucassen1,2, Marinus van der Gaag3, Arco J. Wagenvoort5, Henk Castelijns4, Henk A.M. Ketelaars4, Gerard van der Velde3,6,7 and Alfons J.P. Smolders1,2 1B-WARE Research Centre, Radboud University, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 2Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands 3Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands 4Evides Water Company, PO Box 4472, 3006 AL Rotterdam, The Netherlands 5AqWa, Voorstad 45, 4461 RT Goes, The Netherlands 6Naturalis Biodiversity Center, P.O. 9517, 2300 RA Leiden, The Netherlands 7Netherlands Centre of Expertise on Exotic Species (NEC-E). Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Author e-mails: [email protected] (YJMV), [email protected] (ECHETL), [email protected] (MG), [email protected], (AJW), [email protected] (HC), [email protected] (HAMK), [email protected] (VG), [email protected] (AJPS) *Corresponding author Citation: Verstijnen YJM, Lucassen ECHET, van der Gaag M, Wagenvoort AJ, Abstract Castelijns H, Ketelaars HAM, van der Velde G, Smolders AJP (2019) Trophic Invasive species can directly or indirectly alter (a)biotic characteristics of ecosystems, relationships in Dutch reservoirs recently resulting in changing energy flows through the food web.
    [Show full text]
  • Applied Freshwater Fish Biology an Introduction to Methods of Research and Management
    How to preserve and how to exploit natural populations to be sustained for the future. Plain questions without equally plain answers Applied freshwater fish biology An introduction to methods of research and management Arne N. Linløkken, ass. professor Inland Norway University of Applied Sciences Arne N. 1 CONTENT INTRODUCTION .................................................................................................................................................. 3 Prehistory and evolution ......................................................................................................................................... 3 Short on construction and function ......................................................................................................................... 4 Morphology ........................................................................................................................................................ 4 Anatomy and physiology .................................................................................................................................... 5 European freshwater fish species ............................................................................................................................ 6 Immigration and distribution of freshwater fish in western Scandinavia ........................................................... 7 Western immigrants ........................................................................................................................ 8
    [Show full text]
  • The Round Goby Genome Provides Insights Into Mechanisms That May Facilitate Biological Invasions
    Adrian-Kalchhauser et al. BMC Biology (2020) 18:11 https://doi.org/10.1186/s12915-019-0731-8 RESEARCH ARTICLE Open Access The round goby genome provides insights into mechanisms that may facilitate biological invasions Irene Adrian-Kalchhauser1,2* , Anders Blomberg3†, Tomas Larsson4†, Zuzana Musilova5†, Claire R. Peart6†, Martin Pippel7†, Monica Hongroe Solbakken8†, Jaanus Suurväli9†, Jean-Claude Walser10†, Joanna Yvonne Wilson11†, Magnus Alm Rosenblad3,12†, Demian Burguera5†, Silvia Gutnik13†, Nico Michiels14†, Mats Töpel2†, Kirill Pankov11†, Siegfried Schloissnig15† and Sylke Winkler7† Abstract Background: Theinvasivebenthicroundgoby(Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochromeP450enzymes,aremarkablydiverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions.
    [Show full text]
  • Cottus Schitsuumsh, a New Species of Sculpin (Scorpaeniformes: Cottidae) in the Columbia River Basin, Idaho-Montana, USA
    Zootaxa 3755 (3): 241–258 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3755.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:5147B3DB-9071-408B-A8D1-B3575ED5806E Cottus schitsuumsh, a new species of sculpin (Scorpaeniformes: Cottidae) in the Columbia River basin, Idaho-Montana, USA MICHAEL LEMOINE1,3, MICHAEL K. YOUNG2, KEVIN S. MCKELVEY2, LISA EBY1, KRISTINE L. PILGRIM2 & MICHAEL K. SCHWARTZ2 1 Wildlife Biology Program, University of Montana, Missoula, Montana 59812, USA 2U.S. Forest Service, Rocky Mountain Research Station, Missoula, Montana 59801, USA 3Corresponding author. E-mail: [email protected] Abstract Fishes of the genus Cottus have long been taxonomically challenging because of morphological similarities among species and their tendency to hybridize, and a number of undescribed species may remain in this genus. We used a combination of genetic and morphological methods to delineate and describe Cottus schitsuumsh, Cedar Sculpin, a new species, from the upper Columbia River basin, Idaho-Montana, USA. Although historically confused with the Shorthead Sculpin (C. confusus), the genetic distance between C. schitsuumsh and C. confusus (4.84–6.29%) suggests these species are distant relatives. Moreover, the two species can be differentiated on the basis of lateral-line pores on the caudal peduncle, head width, and interpelvic width. Cottus schitsuumsh is also distinct from all other Cottus in this region in having a single small, skin-covered, preopercular spine. Haplotypes of mtDNA cytochrome oxidase c subunit 1 of C. schitsuumsh differed from all other members of the genus at three positions, had interspecific genetic distances typical for congeneric fishes (1.61–2.74% to nearest neighbors), and were monophyletic in maximum-likelihood trees.
    [Show full text]
  • Global Conservation Translocation Perspectives: 2021. Case Studies from Around the Globe
    Global conservation Global conservation translocation perspectives: 2021 translocation perspectives: 2021 IUCN SSC Conservation Translocation Specialist Group Global conservation translocation perspectives: 2021 Case studies from around the globe Edited by Pritpal S. Soorae IUCN SSC Conservation Translocation Specialist Group (CTSG) i The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or any of the funding organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry of Foreign Affairs of Denmark; Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC) and the United States Department of State. Published by: IUCN SSC Conservation Translocation Specialist Group, Environment Agency - Abu Dhabi & Calgary Zoo, Canada. Copyright: © 2021 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non- commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Soorae, P. S.
    [Show full text]
  • Assessment of the Conservation Status of Endemic Sculpin Cottus Haemusi (Cottidae) in the River Vit (Danube Tributary), Northwest Bulgaria E
    Knowledge and Management of Aquatic Ecosystems (2011) 403, 10 © ONEMA, 2011 http://www.kmae-journal.org DOI: 10.1051/kmae/2011071 Assessment of the conservation status of endemic sculpin Cottus haemusi (Cottidae) in the river Vit (Danube Tributary), northwest Bulgaria E. Petrova Uzunova(1) Received March 29, 2011 Revised July 14, 2011 Accepted July 25, 2011 ABSTRACT Key-words: Cottus haemusi (Marinov and Dikov, 1986. Acta Zool. Bulg. 3, 18–23) is an Cottus haemusi, endemic fish species that is restricted to the upper tributaries of the river distribution, Vit, Northwest Bulgaria. After its discovery in 1986, no further investigation abundance, of the C. haemusi population has been conducted. The aims of the present size, study were to determine its current population status based on the distri- conservation bution, abundance and size structure of the C. haemusi population and to measures analyse the main environmental parameters of its habitat. Five upland tri- butaries and the main river were examined in low-water periods in 2009 and 2010. Two-pass electrofishing surveys were performed at 14 sites to estimate species presence, abundance and size distribution. C. haemusi was only detected in two tributaries of the river Vit: Kostina and Toplja. The current investigation failed to find the species at previously recorded sites. The total distribution area of this species is estimated to be 16 200 m2. The observed abundance of the Vit sculpin ranged from 5.6 to 8.4 indivi- duals·100 m–2, with a mean of 7.0 individuals·100 m–2. Investigation of the size structure revealed the relatively low contribution of one-summer-old individuals.
    [Show full text]
  • Preliminary Study of the Habitat, Hydrological And
    LIFE project number LIFE10 NAT/SI/142 PRELIMINARY STUDY OF THE HABITAT, HYDROLOGICAL AND HYDRAULIC CONDITIONS IN THE LJUBLJANICA RIVER CORRIDOR, ESTIMATION OF DANUBE SALMON, DANUBE ROACH AND STRIPED CHUB POPULATION Action: A1 Date: December 2013 1 AN OVERWIEV OF THE RECENT STUDIES ON DANUBE SALMON, DANUBE ROACH AND STRIPED CHUB POPULATION In 2007 dr. Meta Povž and mag. Suzana Šumer took a survey of ecological condition of river Ljubljanica. They monitored the river from the source to the confluence with the Gruber canal in the city of Ljubljana. In addition, historical data about fish on the surveyed part of Ljubljanica were collected. 41 different fish species were registered, among them 31 fish and one lamprey were autochthonous and 9 were aliens. On the basis of historical and acquired data of fish populations they judged that the river Ljubljanica is in moderate ecological status. Ecological potential of the urban river area was not estimated because of lack of proper recent ichthyologic data. 1.1 River Ljubljanica and history of regulations Ljubljanica basin covers an area of 1900 square kilometres what represents almost one tenth of the whole country. The river is 41 kilometres long, which basin is habitat with high diversity, so a real natural museum to comprehend karst secrets, its flora and fauna and human adaptation to nature. Regulation of Ljubljanica started in Roman times, when they were draining and cultivating Ljubljansko Barje and performed regulations of some streams. All the regulations in the 18th and 19th century and in the first half of 20th century were designed for draining and colonising Barje and preventing floods in the city.
    [Show full text]
  • Biodivers Conserv (2008) 17:893-910 DOI 10.1007/S10531-008-9335-2 SUPPLEMENTARY TABLES and REFERENCES
    Biodivers Conserv (2008) 17:893-910 DOI 10.1007/s10531-008-9335-2 SUPPLEMENTARY TABLES AND REFERENCES Potentials for monitoring gene level biodiversity: using Sweden as an example Linda Laikre · Lena C. Larsson · Anna Palmé · Johan Charlier · Melanie Josefsson · Nils Ryman Table S1 Molecular genetic studies of natural Swedish populations (as of August 2006) defined taxonomically in alphabetical order www.zoologi.su.se/research/popgen/monitoring __________________________ Linda Laikre ( ) · Lena C. Larsson · Anna Palmé · Johan Charlier · Nils Ryman Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden e-mail: [email protected] Melanie Josefsson Department of Environmental Monitoring and Assessment, Swedish Environmental Protection Agency, P.O. Box 7050, 750 07 Uppsala, Sweden Table S1 Molecular genetic studies of natural Swedish populations (as of August 2006) defined taxonomically in alphabetical order. Note - studies can include several species, the total number of references is 775 No. of Kingdom Phylum/Division Class/Order/Family Scientific name Common name studies Animalia Actinopterygii Anguilliformes Anguilla anguilla European eel 4 Clupeiformes Alosa fallax twaite shad 1 Clupea harengus Atlantic herring 9 Cypriniformes Abramis blicca white bream 1 Leuciscus cephalus chub 1 Esociformes Esox lucius northern pike 2 Gadiformes Gadus morhua Atlantic cod 8 Gasterosteiformes Syngnathus typhle pipefish 1 Osmeriformes Osmerus eperlanus European smelt 1 Perciformes Gymnocephalus cernua
    [Show full text]
  • RSG Book Template V3 121210
    Final COver:Layout 1 12/27/10 9:39 AM Page 1 Global Re-introduction Perspectives: 2010 Additional case-studies from around the globe Edited by Pritpal S. Soorae Global Re-introduction Perspectives: 2010 INTERNATIONAL UNION FOR CONSERVATION OF NATURE WORLD HEADQUARTERS Rue Mauverney 28 1196 Gland, Switzerland [email protected] Tel +41 22 999 0000 Fax +41 22 999 0002 www.iucn.org IUCN/SSC Re-introduction Specialist Group (RSG) The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or any of the funding organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN/SSC Re-introduction Specialist Group & Environment Agency-ABU DHABI Copyright: 2010 International Union for the Conservation of Nature and Natural Resources. Citation: Soorae, P. S. (ed.) (2010) GLOBAL RE-INTRODUCTION PERSPECTIVES: Additional case-studies from around the globe. IUCN/ SSC Re-introduction Specialist Group, Abu Dhabi, UAE, xii + 352 pp. ISBN: 978-2-8317-1320-5 Cover photo: Clockwise starting from top-left: i. Damselfly, UK © PC Watts ii. Corn crake, UK © Andy Hay (rspb-images.com) iii. Western prairie fringed orchid, USA © Margaret From iv. Arabian oryx, Saudi Arabia © M. Z. Islam v. Corroboree frog, Australia © D. Hunter Cover design & layout by: Pritpal S. Soorae,
    [Show full text]
  • Competitive Interactions for Food Resources Between Invasive Racer Goby Babka Gymnotrachelus and Native European Bullhead Cottus Gobio
    Biol Invasions DOI 10.1007/s10530-013-0470-7 ORIGINAL PAPER Competitive interactions for food resources between invasive racer goby Babka gymnotrachelus and native European bullhead Cottus gobio Tomasz Kakareko • Jarosław Kobak • Joanna Grabowska • Łukasz Jermacz • Mirosław Przybylski • Małgorzata Poznan´ska • Dariusz Pietraszewski • Gordon H. Copp Received: 10 June 2012 / Accepted: 11 April 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Racer goby is one of several Ponto– activity (time spent near or inside the feeder) recorded Caspian gobiids spreading throughout European rivers using video cameras and infrared illumination. Racer and concurrent with recent declines in threatened goby exhibited aggressive behaviour towards bullhead populations of a native species of similar biology, the (mean = 2.5 aggressive events h-1), but rarely the European bullhead. Although suggestive of compet- inverse (threatening only, mean = 0.05 events h-1), itive interactions, evidence thereof is scarce, so we significantly limiting bullhead foraging time (by examined behavioural interactions between racer 62 %) and being faster to reach food in the feeding goby and bullhead (single specimens of each species time in 76 % of cases. Gobies were more aggressive together, also pairs of each species) under experimen- during daylight (77 % of all aggressive events occur- tal conditions (shared space with two shelters) to ring in light), and both species spent more time on determine whether the invader displaces the native feeding activities in darkness (88 and 66 % of all time species when food resources are limited. Food (live spent in the feeder by bullheads and gobies, respec- chironomids) was added to a single feeder at rates tively).
    [Show full text]
  • Effects of Habitat Restoration on Fish Communities in Urban Streams
    water Article Effects of Habitat Restoration on Fish Communities in Urban Streams Anna M. Lavelle 1,2,*, Michael A. Chadwick 1, Daniel D. A. Chadwick 3, Eleri G. Pritchard 3 and Nicolas R. Bury 4,5 1 Department of Geography, King’s College London, Bush House, North East Wing, 40 Aldwych, London WC2B 4BG, UK; [email protected] 2 Arup Group, Rose Wharf, 78 East Street, Leeds LS9 8EE, UK 3 Environmental Change Research Centre, Department of Geography, University College London, North West Wing Building, Gower Street, London WC1E 6BT, UK; [email protected] (D.D.A.C.); [email protected] (E.G.P.) 4 School of Science, Technology and Engineering, University of Suffolk, Ipswich IP4 1QJ, UK; [email protected] 5 Suffolk Sustainability Institute, University of Suffolk, Ipswich IP4 1QJ, UK * Correspondence: [email protected] Abstract: Geomorphological alterations, hydrological disconnectivity and water pollution are among the dominant pressures affecting ecological integrity in urban streams. River restoration approaches often involve utilising in-stream structures to encourage flow heterogeneity and promote habitat diversity. However, few studies examine the success of such projects. In this study, fish density, biomass and community structure at paired restored and unrestored reaches across five tributaries of the River Thames were examined. Fish density varied among rivers and reaches but was generally higher at restored sites. Restored sites also exhibited higher overall fish biomass, attributed mainly to the presence of brown trout (Salmo trutta L.) at the River Wandle. Despite higher density and biomass values at restored sites, the community structure analysis did not identify strong links between either river or restoration status using either species-specific density or biomass.
    [Show full text]