Addressing a Large-Scale Implementation of Low-Emission Zones in France
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN THE BUILT ENVIRONMENT, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Addressing a large-scale implementation of low-emission zones in France MINA RONCIÈRE KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT Addressing a large-scale implementation of low-emission zones in France Abstract Air pollution is a public health issue, and traffic is one of the main sources of pollutants such as NO2, PM10 and PM2.5. Consequently, European cities have been implementing low-emission zones (LEZs) by defining regulated areas, where the most-polluting vehicles are prohibited from driving. Such measure has been proven to mostly accelerate local fleet renewal rates, thus decreasing emissions and overall pollutant concentrations, provided that restrictions were strict enough. The 2019 mobility-orientation law in France made mandatory for some territories to set up action plans for tackling air pollution issues. With only four currently implemented LEZs in France, feedback from similar territories within the country may be lacking for decision- makers. The goal of this thesis was therefore to aggregate past experiences of already- implemented LEZs in Europe in order to provide recommendations for a large-scale implementation of such policy in France. Relevant city-specific indicators were identified, and K-Means clustering was implemented in order to classify European cities currently implementing LEZs. Such typology was applied to French territories that may face an obligation to implement a LEZ. Recommendations regarding the most relevant strategies were thus formulated. Four city archetypes were identified – public transport metropoles, cycling cities, car-oriented cities, and walkable-impoverished cities. LEZ strategies applied in Berlin, Brussels and Lisbon were respectively the identified best practices associated with the first three clusters. Moreover, out of the 263 French territories targeted in the mobility-orientation law, 54 of them were classified according to the developed typology. More specifically, the majority of them fell into the car-oriented archetype and 20 agglomerations could hence reasonably adapt the Lisbon strategy to their local specificities. Six territories at the outskirts of Paris, associated with public transport metropoles, could also investigate how the current Greater Paris LEZ affect their inhabitants. This thesis is the first to propose a typology tailored for LEZ evaluation. By incorporating modal shares within the classification indicators, potential synergies between LEZs and existing transportation networks were highlighted. Additionally, this thesis shows that future research should focus on investigating impacts of LEZs on traveling patterns and mode choices (vehicle purchases, modal shifts, etc.). This would help future ex-ante evaluations to better calibrate hypotheses regarding direct effects of LEZs. i Addressing a large-scale implementation of low-emission zones in France Sammanfattning Luftföroreningen är en folkhälsofråga och trafik är en av de viktigaste källorna till föroreningen. Följaktligen har europeiska städer implementerat miljözoner genom att definiera reglerade områden där de mest förorenande fordonen är förbjudna att köra. Den här åtgärden påskyndar den lokala flottans förnyelseshastighet och därmed minskar utsläppen och de totala koncentrationerna av föroreningar, förutsatt att begränsningarna är tillräckligt strikta. Lagen om mobilitetsorientering från 2019 gjorde det obligatoriskt för vissa territorier att upprätta handlingsplaner för att hantera luftföroreningen. Med endast fyra för närvarande implementerade miljözoner i Frankrike, kan feedback från liknande territorier inom landet saknas för beslutsfattare. Målet med den här avhandlingen var därför att samla tidigare erfarenheter av redan implementerade miljözoner i Europa för att ge rekommendationer för ett omfattande genomförande av sådan politik i Frankrike. Relevanta stadsspecifika indikatorer identifierades och K-Means clustering genomfördes för att klassificera europeiska städer som för närvarande implementerar miljözoner. Den här typologin användades på franska territorier som kan ha en skyldighet att genomföra en miljözon. Rekommendationer om de mest relevanta strategierna formulerades. Fyra stadens arketyper identifierades – metropoler med kollektivtrafik, cykelstäder, bilorienterade städer och gångbara fattiga städer. Miljözonstrategierna som tillämpades i Berlin, Bryssel och Lissabon var de identifierade bästa metoderna för de tre första klusterna. Dessutom klassificerades 54 av de 263 franska territorier som var inriktade på mobilitetsorienteringslagen, enligt den utvecklade typologin. Mer specifikt klassificerades majoriteten av dem i den bilorienterade arketypen och 20 städer kunde därför rimligen anväda Lissabonstrategin till deras lokala särdrag. Sex territorier i utkanten av Paris förknippades med kollektivtrafikmetropoler, de kunde också undersöka hur den nuvarande Greater Paris: miljözon påverkar deras invånare. Denna avhandling är den första som föreslår en typologi anpassad för miljözonsutvärdering. Genom att integrera modala andelarna i klassificeringsindikatorerna framhävdes potentiella synergier mellan miljözonen och befintliga transportnät. Dessutom visar den här avhandlingen att framtida forskning bör fokusera på att undersöka effekterna av miljözoner på resemönster och lägesval (fordonsinköp, modalskift etc.). Detta skulle hjälpa framtida utvärderingar för att bättre kalibrera hypoteser om direkta effekter av miljözonerna. ii Addressing a large-scale implementation of low-emission zones in France Acknowledgements This thesis would not have been made possible without the contributions of very different people. First and foremost, I would like to thank Joel Franklin, my supervisor and examiner at KTH, for his time and dedication. He helped me to think critically, and asked the right questions at the right time, guiding me throughout this whole research project. Thank you to my industry supervisor, Laurent Schlaeintzauer, who wanted to investigate low-emission zones, who taught me so many different things and skills – from transport policy planning and precise functioning of public authorities, to project management –, who listened to my different ideas and propositions, and who always gave me the greatest advise and comments. I would also like to thank Laurent Rousseau and Jean-Baptiste Trégouët for their time, and for sharing their previous experience working on low-emission zones. Finally, a special thanks to Ellen Zouras, my seminar opponent, for her precise and valuable comments. Greatest thanks to the team at Egis (Catherine, Maëlle, Marianne, Nathan, Olivier, Romane, Said, Shaoqing and Simon) who welcomed me, shared their experience and knowledge, and who established such a cheerful working atmosphere! As this thesis marks the end of 6 years of intense yet fascinating studies, I would also like to deeply thank all my wonderful classmates from Gay-Lussac, Ecole Centrale de Lyon, and KTH Royal Institute of Technology. A special mention goes to Quentin for always bringing joy into my life, and for making the absolute best hummus. Finally, my thankfulness goes to my family for their unconditional love and daily support. Mina Roncière, Paris, October 2020 iii Addressing a large-scale implementation of low-emission zones in France Definitions and acronyms ADEME – French Agency for the Environment and Energy Management BC – Black Carbon EC – Elemental Carbon EPCI – French public administrations for intermunicipal cooperation (i.e. groups of municipalities which have pooled competences in different areas) EV – Electric Vehicle HDV – Heavy-Duty Vehicle LEZ – Low-Emission Zone LPG – Liquified Petroleum Gas NO2 – Nitrogen dioxide NOx – Nitrogen oxide O3 – Ozone PM2.5 – Particulate matter (diameter < 10µm) PM10 – Particulate matter (diameter < 2.5µm) SO2 – Sulphur dioxide TOD – Transit-Oriented Development iv Addressing a large-scale implementation of low-emission zones in France Table of contents Abstract ................................................................................................................................... i Sammanfattning ..................................................................................................................... ii Acknowledgements ............................................................................................................... iii Definitions and acronyms ...................................................................................................... iv Table of contents .................................................................................................................... v List of figures ........................................................................................................................ vii List of tables ........................................................................................................................ viii Introduction ........................................................................................................................... 9 1 Background and related work ........................................................................................12 1.1 Implementation of low-emission zones ...................................................................12 1.1.1 Policy principle ................................................................................................12 1.1.2 Full-chain reaction of