Evolution of Enzyme Cascades from Embryonic Development to Blood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download the Abstract Book
1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing. -
Dissecting Mechanisms Controlling Neural Network Formation in Drosophila Melanogaster
Dissecting mechanisms controlling neural network formation in Drosophila melanogaster Hong Long Department of Neurology and Neurosurgery McGill University Montreal, Quebec, Canada August 2009 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the Ph.D. degree in Neuroscience © Hong Long, 2009 1 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-66458-2 Our file Notre référence ISBN: 978-0-494-66458-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Evolutionary and Functional Relationships of Insect Immune
Evolutionary and functional relationships of insect immune proteins Marco Fabbri Supervisors: Prof. Otto Schmidt Dr. lJlrich Theopold A thesis submitted for the degree of Doctor of Philosophy in the Department of Applied and Molecular Ecology The University of Adelaide May 2003 Contents Innate immunity.......... 4 Recognition molecules 6 Cellular response 10 Hemolymph coagulation............. 1.3 Exocytosis of hemocytes mediated by lipopolysaccharide 15 Coagulation mediated by lipopolysaccharide. .15 Coagulation mediated by beta-glucan .........,. t7 Lectins 17 Glycosylation................ t9 Glycosylation in Insects Glycosyltransferases ..... 2T Mucins 22 Hemomucin .................. 24 Strictosidine synthase 26 Drosophila melanogaster as a model 26 I A Lectin multigene family in Drosophila melanogaster 28 Introduction 28 Materials and Methods ..29 Sequence similarity searches 29 Results 30 Novel lectin-like sequences in Drosophila 30 Discussion .....31 Figures 34 An immune function for a glue-like Drosophila salivary protein 39 Introduction 39 Materials and Methods.............. .....41 Flies .. 4r Hemocyte staining with lectin.. 41 Electrophoretic techniques ....... 4I N-terminal sequencing of pl50 42 Pl50 - E. coli binding 42 RNA extraction. 43 In situ hybndizations ........, 43 Isolation of Ephestia ESTs 43 RT PCR 44 Relative quantitative PCR 44 Results .46 II p150 is 171-7 47 Discussion...... 49 Figures.... 53 Animal and plant members of a gene family with similarity to alkaloid- Introduction 58 S equence smilarity searches 59 Insect cultures 59 Preparation of antisera 59 Immunoblotting and Immunodetection of Proteins........ 60 Radiolabelling and Purification of DNA Probes 60 Hybridization conditions 6t Northern blots ................ 61 Results 62 Novel strictosidine synthase and hemomucin .......... -.'.'.-.......-'.-'...62 Discussion .....64 Figures 67 III Summary Innate immunity has many features, involving a diverse range of pathways of immune activation and a multitude of effectors-functions. -
Current Genome-Wide Analysis on Serine Proteases in Innate Immunity
Current Genomics, 2004, 5, 000-000 1 Current Genome-Wide Analysis on Serine Proteases in Innate Immunity Jeak L. Ding1,*, Lihui Wang1 and Bow, Ho2 Departments of Biological Sciences1 and Microbiology2, National University of Singapore, 14, Science Drive 4, Singapore 117543 Abstract: Recent studies on host defense against microbial pathogens have demonstrated that innate immunity predated adaptive immune response. Present in all multicellular organisms, the innate defense uses genome-encoded receptors, to distinguish self from non-self. The invertebrate innate immune system employs several mechanisms to recognize and eliminate pathogens: (i) blood coagulation to immobilize the invading microbes, (ii) lectin-induced complement pathway to lyse and opsonize the pathogen, (iii) melanization to oxidatively kill invading microorganisms and (iv) prompt synthesis of potent effectors, such as antimicrobial peptides. Serine proteases play significant roles in these mechanisms, although studies on their functions remain fragmentary, and only several members have been characterized, for example, the serine protease cascade in Drosophila dorsoventral patterning; the Limulus blood clotting cascade; and the silk worm prophenoloxidase cascade. Additionally, serine proteases are involved in processing Späetzle, the Toll ligand for signaling in antimicrobial peptide synthesis. The recent completion of the Drosophila and Anopheles genomes offers a tantalizing promise for genomic analysis of innate immunity of invertebrates. In this review, we discuss the latest genome-wide studies conducted in invertebrates with emphasis on serine proteases involved in innate immune response. We seek to clarify the analysis by using empirical research data on these proteases via classical approaches in biochemical, molecular and genetic methods. We provide an update on the serine protease cascades in various invertebrates and map a relationship between their involvement in early embryonic development, blood coagulation and innate immune defense. -
Sptgase Plays an Important Role in the Hemolymph Clotting in Mud Crab (Scylla Paramamosain) T
Fish and Shellfish Immunology 89 (2019) 326–336 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article SpTGase plays an important role in the hemolymph clotting in mud crab (Scylla paramamosain) T Ngoc Tuan Trana,b,c,1, Weisong Wana,b,c,1, Tongtong Konga,b,c, Xixiang Tangd, Daimeng Zhanga,b,c, Yi Gonga,b,c, Huaiping Zhenga,b,c, Hongyu Maa,b,c, Yueling Zhanga,b,c, ∗ Shengkang Lia,b,c, a Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China b Marine Biology Institute, Shantou University, Shantou, 515063, China c STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China d Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China ARTICLE INFO ABSTRACT Keywords: Transglutaminase (TGase) is important in blood coagulation, a conserved immunological defense mechanism Scylla paramamosain among invertebrates. This study is the first report of the TGase in mud crab (Scylla paramamosain)(SpTGase) Transglutaminase with a 2304 bp ORF encoding 767 amino acids (molecular weight 85.88 kDa). SpTGase is acidic, hydrophilic, Hemolymph clotting stable and thermostable, containing three transglutaminase domains, one TGase/protease-like homolog domain (TGc), one integrin-binding motif (Arg270, Gly271, Asp272) and three catalytic sites (Cys333, His401, Asp424) within the TGc. Neither a signal peptide nor a transmembrane domain was found, and the random coil is dominant in the secondary structure of SpTGase. Phylogenetic analysis revealed a close relation between SpTGase to its homolog EsTGase 1 from Chinese mitten crab (Eriocheir sinensis). -
A Synthetic Alternative to Horseshoe Crab Blood for Endotoxin Detection
Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection Authors: Tom Maloney1, Ryan Phelan1, and Naira Simmons2 1 Revive & Restore 2Wilson Sonsini Goodrich & Rosati Corresponding Author: Tom Maloney [email protected] Abstract Horseshoe crabs have been integral to the safe production of vaccines and injectable medications for the past forty years. The bleeding of live horseshoe crabs, a process that leaves thousands dead annually, is an ecologically unsustainable practice for all four species of horseshoe crab and the shorebirds that rely on their eggs as a primary food source during spring migration. Populations of both horseshoe crabs and shorebirds are in decline. This study confirms the efficacy of recombinant Factor C, a synthetic alternative that eliminates the need for animal products in endotoxin detection. Furthermore, our findings confirm that the biomedical industry can achieve a 90-percent reduction in the use of reagents derived from horseshoe crabs by using the synthetic alternative for the testing of water and other common materials used in during the manufacturing process. This represents an extraordinary opportunity for the biomedical and pharmaceutical industries to significantly contribute to the conservation of horseshoe crabs and the birds that depend on them. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26922v1 | CC BY 4.0 Open Access | rec: 10 May 2018, publ: 10 May 2018 Introduction The 450-million-year-old horseshoe crab has been integral to the safe manufacturing of vaccines, injectable medications, and certain medical devices. Populations of all four extant species of horseshoe crab are in decline across the globe, in part, because of their extensive use in biomedical testing. -
(12) United States Patent (10) Patent No.: US 8,034,913 B2 Hunt Et Al
USOO8034913B2 (12) United States Patent (10) Patent No.: US 8,034,913 B2 Hunt et al. (45) Date of Patent: Oct. 11, 2011 (54) RECOMBINANTLY MODIFIED PLASMIN FOREIGN PATENT DOCUMENTS CA 2045869 12/1991 (75) Inventors: Jennifer A. Hunt, Raleigh, NC (US); WO WO 97.27331 A2 7/1997 Valery Novokhatny, Raleigh, NC (US) WO WO99,05322 A1 2/1999 WO WOO1,9436.6 A1 12/2001 WO WOO2,5O290 A1 6, 2002 (73) Assignee: Grifols Therapeutics Inc., Research WO WOO3/O54232 A2 7, 2003 Triangle Park, NC (US) WO WO 2004/052228 A2 6, 2004 WO WO 2005,105990 11, 2005 WO WO 2007/047874 4/2007 (*) Notice: Subject to any disclaimer, the term of this WO WO 2009,0734.71 6, 2009 patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 854 days. Hunt et al. Simplified recombinant plasmin: Production and func tional comparison of a novel thrombolytic molecule with plasma (21) Appl. No.: 11/568,023 derived plasmin. Thromb. Haemost 100:413-419, 2008.* Andrianov, S.I., et al., “Peculiarities of Hydrolytic Action of Plasmin, (22) PCT Filed: Apr. 21, 2005 Miniplasmin, Microplasmin and Trypsin on Polymeric Fibrin.” Ukr. Biokhim. Zh., 64(3): 14-20 (1992). Anonick, P. et al., “Regulation of Plasmin, Miniplasmin and (86). PCT No.: PCT/US2OOS/O13562 Streptokinase-Plasmin Complex by-O.--Antiplasmin, O.-- S371 (c)(1) Macroglobulin, and Antithrombin III in the Presence of Heparin.” . Thrombosis Res., 59: 449-462 (1990). (2), (4) Date: Feb. 1, 2008 Bennett, D., et al., “Kinetic Characterization of the Interaction of Biotinylated Human Interleukin 5 with an Fc Chimera of its Receptor (87) PCT Pub. -
Cloning of Receptor Tyrosine Kinases from Anvsia
Cloning of Receptor Tyrosine Kinases From ANvsia Jonathan Hislop Neurology and Neurosurgery, McGill University, Montreal. August, 1998 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Science @Jonathan Hislop, 1998 National Library Biblioth$ue nationale du Cana a Acquisitions and Acquisitions et Bibbgraphic Semices m~icesbibliographiques 395 Wdlngton Street 395, rue Weilinglori OItawaON K1AW OnawaON K1AON4 CariPds Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence ailowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seU reproduire, prêter, distribuer ou copies of this thesis in rnicrofonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substaatial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othenirise de celle-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract I have cloned two putative receptor tyrosine kinases (RTKs) fiom Aplysia californica, designated Aror and Anif. Aror is homologous to RTKs fiom the Ror subfarnily. Furthemore, Aror contains an extracellular immunoglobulin-like domain, cysteine-rich region, and kringie domain. These domains are d characteristic of Ror recepton. Amf is homologous to members of the Ret and FGF receptor subfamilies of RTKs. -
The Molecular Basis of Blood Coagulation Review
Cell, Vol. 53, 505-518, May 20, 1988, Copyright 0 1988 by Cell Press The Molecular Basis Review of Blood Coagulation Bruce Furie and Barbara C. Furie into the fibrin polymer. The clot, formed after tissue injury, Center for Hemostasis and Thrombosis Research is composed of activated platelets and fibrin. The clot Division of Hematology/Oncology mechanically impedes the flow of blood from the injured Departments of Medicine and Biochemistry vessel and minimizes blood loss from the wound. Once a New England Medical Center stable clot has formed, wound healing ensues. The clot is and Tufts University School of Medicine gradually dissolved by enzymes of the fibrinolytic system. Boston, Massachusetts 02111 Blood coagulation may be initiated through either the in- trinsic pathway, where all of the protein components are present in blood, or the extrinsic pathway, where the cell- Overview membrane protein tissue factor plays a critical role. Initia- tion of the intrinsic pathway of blood coagulation involves Blood coagulation is a host defense system that assists in the activation of factor XII to factor Xlla (see Figure lA), maintaining the integrity of the closed, high-pressure a reaction that is promoted by certain surfaces such as mammalian circulatory system after blood vessel injury. glass or collagen. Although kallikrein is capable of factor After initiation of clotting, the sequential activation of cer- XII activation, the particular protease involved in factor XII tain plasma proenzymes to their enzyme forms proceeds activation physiologically is unknown. The collagen that through either the intrinsic or extrinsic pathway of blood becomes exposed in the subendothelium after vessel coagulation (Figure 1A) (Davie and Fiatnoff, 1964; Mac- damage may provide the negatively charged surface re- Farlane, 1964). -
Differential Binding of Plasminogen, Plasmin, and Angiostatin4.5 to Cell Surface B-Actin: Implications for Cancer-Mediated Angiogenesis
Research Article Differential Binding of Plasminogen, Plasmin, and Angiostatin4.5 to Cell Surface B-Actin: Implications for Cancer-Mediated Angiogenesis Hao Wang,1 Jennifer A. Doll,1 Keyi Jiang,1 Deborah L. Cundiff,1 Jarema S. Czarnecki,1 Mindy Wilson,2 Karen M. Ridge,2 and Gerald A. Soff1,3 1Division of Hematology/Oncology and 2Division of Pulmonary and Critical Care Medicine, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois and 3Division of Hematology/ Oncology, State University of New York Downstate Medical Center, Brooklyn, New York Abstract Several angiostatin isoforms have been reported, differing in Angiostatin4.5 (AS4.5) is the product of plasmin autoproteol- kringle content. Angiostatins consisting of plasminogen kringles 1 f to 3, kringles 1 to 4, or angiostatin4.5 (AS4.5), which includes ysis and consists of kringles 1 to 4 and 85% of kringle 5. In 78 529 culture, cancer cell surface globular B-actin mediates plasmin kringles 1 to 4 plus 85% of kringle 5 (Lys -Arg ), have been autoproteolysis to AS4.5. We now show that plasminogen generated in vitro by a variety of proteinases. However, it is still not binds to prostate cancer cells and that the binding colocalizes well understood which angiostatin isoforms are present naturally with surface B-actin, but AS4.5 does not bind to the cell in the human body (5, 8–13). We have shown previously that surface. Plasminogen and plasmin bind to immobilized AS4.5 is a naturally occurring human form (14). AS4.5 is generated B-actin similarly, with a K of f140 nmol/L. -
Supplementary Materials
Supplementary Materials 0.3 0.274 0.28 0.2735 0.26 0.273 0.24 0.2725 0.22 0.2 0.272 ccTM−score 0.18 0.2715 0.16 0.271 0.14 0.2705 0.12 0.1 0.27 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 d gap penalty cut Figure S1. Selection of the optimal values for dcut and gap penalty. The experiments were done on 50% randomly selected groups from the SABmark_twi dataset. The gap penalty on the left panel is 0 and the dcut on the right panel is 4. 1 0.9 0.8 PCC=0.94 0.7 0.6 0.5 0.4 ACC of the MSTA 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 ACC of the PSA Figure S2. The correlation between the accuracy of the PSA and the MSTA. The data used in this figure are available in Table S5. Table S1. The influence of TM-score normalization. TM-score_s/TM-score_b is the mean TM-score normalized by the size of the smaller/bigger protein. ccTM-score_s and ccTM-score_b are the mean common core TM-scores of the corresponding MSTA. Dataset HOMSTRAD SABmark_sup SABmark_twi SISY-multiple Number of groups 398 425 209 86 Mean length difference 17.5 34.1 43.4 65.2 Pairwise TM-score_s 0.810 0.683 0.575 0.692 Pairwise TM-score_b 0.756 0.597 0.476 0.571 No. -
Initial Characterization of Coagulin Polymerization and a Novel Trypsin Inhibitor from Limulus Polyphemus Maribeth Ann Donovan University of New Hampshire, Durham
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1990 Initial characterization of coagulin polymerization and a novel trypsin inhibitor from Limulus polyphemus Maribeth Ann Donovan University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Donovan, Maribeth Ann, "Initial characterization of coagulin polymerization and a novel trypsin inhibitor from Limulus polyphemus" (1990). Doctoral Dissertations. 1608. https://scholars.unh.edu/dissertation/1608 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.