The Molecular Basis of Blood Coagulation Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID
International Journal of Molecular Sciences Review Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID Samantha L. Cooper 1,2,*, Eleanor Boyle 3, Sophie R. Jefferson 3, Calum R. A. Heslop 3 , Pirathini Mohan 3, Gearry G. J. Mohanraj 3, Hamza A. Sidow 3, Rory C. P. Tan 3, Stephen J. Hill 1,2 and Jeanette Woolard 1,2,* 1 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 2 Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK 3 School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] (E.B.); [email protected] (S.R.J.); [email protected] (C.R.A.H.); [email protected] (P.M.); [email protected] (G.G.J.M.); [email protected] (H.A.S.); [email protected] (R.C.P.T.) * Correspondence: [email protected] (S.L.C.); [email protected] (J.W.); Tel.: +44-115-82-30080 (S.L.C.); +44-115-82-31481 (J.W.) Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible Citation: Cooper, S.L.; Boyle, E.; for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe Jefferson, S.R.; Heslop, C.R.A.; and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardio- Mohan, P.; Mohanraj, G.G.J.; Sidow, vascular complications (CVCs) associated with infection. -
Urokinase, a Promising Candidate for Fibrinolytic Therapy for Intracerebral Hemorrhage
LABORATORY INVESTIGATION J Neurosurg 126:548–557, 2017 Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage *Qiang Tan, MD,1 Qianwei Chen, MD1 Yin Niu, MD,1 Zhou Feng, MD,1 Lin Li, MD,1 Yihao Tao, MD,1 Jun Tang, MD,1 Liming Yang, MD,1 Jing Guo, MD,2 Hua Feng, MD, PhD,1 Gang Zhu, MD, PhD,1 and Zhi Chen, MD, PhD1 1Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and 2Department of Neurosurgery, 211st Hospital of PLA, Harbin, People’s Republic of China OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fi- brinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH. RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH. -
2-Diss Preface1
Purification and preliminary characterization of Bothrops moojeni venom components active on haemostasis (Botmo Thesis) Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Anna Maria Perchu ć aus Warschau, Polen Referent: Prof. Dr. Beat Ernst Korreferent: Prof. Dr. phil. Jürg Meier Basel, 2010 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Herrn Prof. Dr. Beat Ernst und Herrn Prof. Dr. phil. Jürg Meier Basel, den 16. September 2008 Prof. Dr. Eberhard Parlow Dekan Wissenschaft ist der gegenwärtige Stand unseres Irrtums Jakob Franz Kern (1897-1924) Anna Maria Perchuć – Botmo Thesis I Acknowledgements To my Doktorvater Prof. Dr. Beat Ernst for his patience, support and scientific advice. To Prof. Dr. phil. Jürg Meier (my Korreferent) and to Prof. Dr. Reto Brun for their input to my PhD exam. To Pentaphatm Ltd. for giving me the opportunity to work on the “Bothrops moojeni Venom Proteomics Project”. To Marianne and Bea for helpful discussions, scientific, practical and personal support, their enthusiasm and friendship. To Reto for giving me the encouragement and guidance and for coordinating the Botmo Project. To the whole Hämostase und Test-Kit-Entwicklung Team for their friendly and helpful cooperation. To Laure, Reto, Philou and the whole Atheris Team for their scientific assistance. To Marc and his Synthesis Team for their involvement in the Botmo Project, their help, support and sense of humour. To Uwe and Andre for the fruitful cooperation. To Andreas for his great assistance and many valuable suggestions. To Remo and Martin for their support in the cell culture lab. -
Download the Abstract Book
1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing. -
Dissecting Mechanisms Controlling Neural Network Formation in Drosophila Melanogaster
Dissecting mechanisms controlling neural network formation in Drosophila melanogaster Hong Long Department of Neurology and Neurosurgery McGill University Montreal, Quebec, Canada August 2009 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the Ph.D. degree in Neuroscience © Hong Long, 2009 1 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-66458-2 Our file Notre référence ISBN: 978-0-494-66458-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Update on Antithrombin I (Fibrin)
©2007 Schattauer GmbH,Stuttgart AnniversaryIssueContribution Update on antithrombinI(fibrin) Michael W. Mosesson 1957–2007) The Blood Research Institute,BloodCenter of Wisconsin, Milwaukee,Wisconsin, USA y( Summary AntithrombinI(fibrin) is an important inhibitor of thrombin exosite 2.Thelatterreaction results in allostericchanges that generation that functions by sequestering thrombin in the form- down-regulate thrombin catalytic activity. AntithrombinIdefi- Anniversar ingfibrin clot,and also by reducing the catalytic activity of fibrin- ciency (afibrinogenemia), defectivethrombin binding to fibrin th boundthrombin.Thrombin binding to fibrin takesplace at two (antithrombin Idefect) found in certain dysfibrinogenemias (e.g. 50 classesofnon-substrate sites: 1) in thefibrin Edomain (two per fibrinogen Naples 1), or areduced plasma γ ’ chain content (re- molecule) throughinteractionwith thrombin exosite 1; 2) at a ducedantithrombin Iactivity),predispose to intravascular singlesite on each γ ’ chain through interaction with thrombin thrombosis. Keywords Fibrinogen,fibrin, thrombin, antithrombin I ThrombHaemost 2007; 98: 105–108 Introduction meric with respecttoits γ chains,and accounts for ~85% of human plasma fibrinogen. Thrombinbinds to its substrate, fibrinogen, through an anion- Low-affinity thrombin binding activity reflects thrombin ex- binding sitecommonlyreferred to as ‘exosite 1’ (1,2). Howell osite1bindinginEdomain of fibrin, as recentlydetailedbyana- recognized nearly acenturyago that the fibrin clot itself exhibits lysesofthrombin-fibrin -
Functional Plasminogen Activator Inhibitor 1 Is Retained on The
ARTICLE Hemostasis Functional plasminogen activator inhibitor 1 is Ferrata Storti Foundation retained on the activated platelet membrane following platelet activation Gael B. Morrow,° Claire S. Whyte and Nicola J. Mutch Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK °Current address: Radcliffe Department of Medicine, University of Oxford, Oxford, UK Haematologica 2020 Volume 105(12):2824-2833 ABSTRACT latelets harbor the primary reservoir of circulating plasminogen acti- vator inhibitor 1 (PAI-1), but the reportedly low functional activity of Pthis pool of inhibitor has led to debate over its contribution to throm- bus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the mem- brane, with maximal exposure in response to strong dual agonist stimula- tion. PAI-1 is found to co-localize in the 'cap' of phosphatidylserine-expos- ing platelets with its co-factor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbb3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post stimulation into sol- uble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fib- rinolytic models, we found that platelets produce a strong stabilizing effect against tissue plasminogen activator (tPA)-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions, stabilize thrombi against premature degradation in a PAI-1-dependent manner. -
Tranexamic Acid in the Treatment of Residual Chronic Subdural Hematoma: a Single-Centre, Observer-Blinded, Randomized Controlled Trial (Trace)
TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) by Adriana Micheline Workewych A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Adriana Micheline Workewych 2018 TRANEXAMIC ACID IN THE TREATMENT OF RESIDUAL CHRONIC SUBDURAL HEMATOMA: A SINGLE-CENTRE, OBSERVER-BLINDED, RANDOMIZED CONTROLLED TRIAL (TRACE) Adriana Micheline Workewych Master of Science Institute of Medical Science University of Toronto 2018 ABSTRACT Chronic subdural hematoma (CSDH) is a frequent consequence of head trauma, particularly in older individuals. Given the aging of populations globally, its incidence is projected to increase substantially. Hyperfibrinolysis may be central to CSDH enlargement by causing excessive clot degradation and liquefaction, impeding resorption. The only current standard treatment for CSDH is surgery, however, up to 31% of residual hematomas enlarge, requiring reoperation. Tranexamic acid (TXA), an antifibrinolytic medication that prevents excessively rapid clot breakdown, may help prevent CSDH enlargement, potentially eliminating the need for repeat surgery. To evaluate the feasibility of conducting a trial investigating TXA efficacy in residual CSDH, we conducted an observer-blinded, pilot randomized controlled trial (RCT). We showed this trial was feasible and safe, reporting only minor to moderate AEs, and an attrition rate of 4%. The results from this study will inform the conduct of a double-blinded RCT investigating TXA efficacy in post-operative CSDH management. ii ACKNOWLEDGEMENTS First, I would like to thank my supervisor Dr. Michael Cusimano, my mentor for nearly six years. You have always given me more opportunity than I could have ever hoped for – I could not ask for a more dedicated teacher. -
A Novel Detection Method of Cleaved Plasma High-Molecular-Weight Kininogen Reveals Its Correlation with Alzheimer’S Pathology and Cognitive Impairment
Alzheimer’s& Dementia: Diagnosis, Assessment & Disease Monitoring 10 (2018) 480-489 Blood-Based Biomarkers A novel detection method of cleaved plasma high-molecular-weight kininogen reveals its correlation with Alzheimer’s pathology and cognitive impairment Hitomi Yamamoto-Imotoa,b, Daria Zamolodchikova, Zu-Lin Chena, S. Lloyd Bournec, Syeda Rizvic, Pradeep Singha, Erin H. Norrisa, Frances Weis-Garciac, Sidney Stricklanda,* aPatricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA bResearch fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan cAntibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA Abstract Introduction: Accumulation of b-amyloid is a pathological hallmark of Alzheimer’s disease (AD). b-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. Methods: HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. Results: We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sand- wich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. Discussion: High levels of plasma HKc could be used as an innovative biomarker for AD. -
The Plasmin–Antiplasmin System: Structural and Functional Aspects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family. -
Path Ggf 5 2020.Pdf
Hemostasis Hemostasis and Thrombosis Normal hemostasis is a consequence of tightly regulated processes that maintain blood in a fluid state in normal vessels, yet also permit the rapid formation of a hemostatic clot at the site of a vascular injury. Thrombosis involves blood clot formation within intact vessels. Both hemostasis and thrombosis involve three components: the vascular wall, platelets and the coagulation cascade. Elements of the Hemostatic process • Endothelium • Anti-thrombosis • Pro-thrombosis • Platelets • Platelet-endothelial cell interaction • Coagulation cascade http://www.as.miami.edu/chemistry/2086/chapter_21/NEW-Chap21_class_part1_files/image002.jpg After initial injury there is a brief period of arteriolar vasoconstriction mediated by reflex neurogenic mechanisms and augmented by the local secretion of factors such as endothelin (a potent endothelium-derived vasoconstrictor) The effect is transient, however, and bleeding would resume if not for activation of the platelet and coagulation systems. Endothelial injury exposes highly thrombogenic subendothelial extracellular matrix (ECM), facilitating platelet adherence and activation. Activation of platelets results in a dramatic shape change (from small rounded discs to flat plates with markedly increased surface area), as well as the release of secretory granules. Within minutes the secreted products recruit additional platelets (aggregation) to form a hemostatic plug; this process is referred to as primary hemostasis. http://www.ouhsc.edu/platelets/Platelet%20Pic s/Platelets3.jpg http://medcell.med.yale.edu/histology/blood_bone_marr ow_lab/images/platelets_em.jpg Tissue factor is also exposed at the site of injury. Also known as factor III and thromboplastin, tissue factor is a membrane-bound procoagulant glycoprotein synthesized by endothelial cells. It acts in conjunction with factor VII (see below) as the major in vivo initiator of the coagulation cascade, eventually culminating in thrombin generation. -
High Molecular Weight Kininogen Contributes to Early Mortality and Kidney Dysfunction in a Mouse Model of Sickle Cell Disease
DR ERICA SPARKENBAUGH (Orcid ID : 0000-0002-5529-7847) DR NIGEL KEY (Orcid ID : 0000-0002-8930-4304) Article type : Original Article High molecular weight kininogen contributes to early mortality and kidney dysfunction in a mouse model of sickle cell disease. Erica M Sparkenbaugh1, Malgorzata Kasztan2, Michael W Henderson1, Patrick Ellsworth1, Parker Ross Davis2, Kathryn J Wilson1, Brandi Reeves1, Nigel S Key1,5, Sidney Strickland3, Keith McCrae4, David M. Pollock2, Rafal Pawlinski1* 1UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; 3Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY; 4Taussig Cancer Institute, Department of Hematology Oncology, Cleveland Clinic, Cleveland, OH; and 5Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC. *Address for correspondence Rafal Pawlinski 8008B Mary Ellen Jones Bldg, CB 7035 This article has been accepted for publication and undergone full peer review but has not been throughAccepted Article the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/JTH.14972 This article is protected by copyright. All rights reserved 116 Manning Drive Chapel Hill, NC 27599-7025 Ph: 919-843-8387 Fax: 919-843-4896 Email: [email protected] Word Counts Abstract: 179 Main Text: 3691 Figures: Main manuscript has 6 figures, 2 tables; supplement has 4 tables and 3 figures.