molecules Article Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins Paul W. Chrystal 1,2,† , Tim Footz 1,† , Elizabeth D. Hodges 2, Justin A. Jensen 2, Michael A. Walter 1,* and W. Ted Allison 1,2,3,* 1 Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada;
[email protected] (P.W.C.);
[email protected] (T.F.) 2 Department of Biological Sciences, University of Alberta, Edmonton, AB T7Y 1C4, Canada;
[email protected] (E.D.H.);
[email protected] (J.A.J.) 3 Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada * Correspondence:
[email protected] (M.A.W.);
[email protected] (W.T.A.) † These authors contributed equally to this work. Abstract: The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurode- generative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolution- ary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most Citation: Chrystal, P.W.; Footz, T.; ancient paralog of the family. By curating the functional domains in each paralog, we identified Hodges, E.D.; Jensen, J.A.; Walter, PMEL M.A.; Allison, W.T.