Common Neonatal Syndromes

Total Page:16

File Type:pdf, Size:1020Kb

Common Neonatal Syndromes Seminars in Fetal & Neonatal Medicine (2005) 10, 221e231 www.elsevierhealth.com/journals/siny Common neonatal syndromes Mark H. Lipson* Department of Genetics, Permanente Medical Group, Sacramento, CA, USA KEYWORDS Summary The process of diagnosis of genetic syndromes in the newborn period is Fluorescence in situ carried out in the context of parental anxiety and the grief following an often- hybridisation (FISH); unexpected outcome after a long pregnancy. The nursery staffs invariably have Telomere; a strong interest in giving the family proper information about prognosis. This Uniparental disomy; article is intended to focus on an approach to the diagnosis of genetic syndromes Imprinting and to discuss specific syndromes that may be seen with some frequency in the nursery. Ó 2005 Elsevier Ltd. All rights reserved. A baby has just been born. The exhausted but a geneticist or genetics centre is essential at some jubilant parents are finally able to see the result of point in the diagnostic process. A diagnosis is not the previous 9 months of morning sickness, weight the end of the process but merely the beginning. gain and water retention. But instead of unmiti- Genetic counseling is a process whereby a con- gated excitement and happiness, there is fear, firmed or possible genetic condition is reviewed uncertainty and disbelief. The reaction of the with the family, and the etiology, natural history, nurses and doctors has indicated that there is prognosis, treatment possibilities, risk of recur- a problem with the baby. What does it mean? Will rence, potential for prenatal diagnosis and the the baby be OK? What can be done to correct the availability of pertinent reading materials and problem? It is in this context that syndrome support groups are discussed at length. The emo- identification takes place. It is a very difficult time tional and psychological aspects of the situation for both the family and the medical staff. A rapid are also explored.1 This process usually takes diagnosis and treatment plan are desired, but this place over the course of several meetings with the is often not possible. family. Although the initial evaluation can be performed This review covers a general approach to making by the pediatrician or neonatologist, referral to a diagnosis in a newborn with anomalies, and describes some of the common syndromes one encounters in the nursery. Several textbooks are * Tel.: C1 916 614 4785; fax: C1 916 614 4985. recommended for obtaining more information 2e4 E-mail address: [email protected] about these syndromes. 1744-165X/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.siny.2005.02.003 222 M.H. Lipson Multiple congenital anomalies Down syndrome Taking a detailed pregnancy history is essential e In the past, this was the most common syndrome it is the starting point of all evaluations of the identified in the newborn period, despite the newborn. A pedigree is also very important. A availability of chorionic villus sampling and amnio- three-generation pedigree is usually obtained in centesis for advanced maternal age. However, with 10e15 min and can be invaluable. Clues from the the advent of prenatal screening programs aimed at type and pattern of anomalies or abnormal preg- detecting Down syndrome in the second and more nancies in family members can point to a certain recently the first trimester, the incidence at birth of type of inheritance pattern or chromosome prob- Down syndrome has decreased. Due to false-nega- lem. It is easier to identify this type of information tive testing and a significant number of women from a pedigree than from a series of family choosing either not to have screening or not to have history questions. amniocentesis after a positive screen, or choosing The physical examination focuses on describing to continue a pregnancy after amniocentesis makes the birth defects and minor anomalies/dysmorphic a definitive diagnosis, Down syndrome continues to features. Determining which features are impor- still be a condition commonly presenting in the tant in syndrome identification is challenging. newborn period. Examining other family members or looking at The condition is usually not hard to identify family photos can be very helpful in determining (Fig. 1). However, if the newborn is premature, whether a dysmorphic feature is a normal family particularly less than 34 weeks’ gestation, Down variant or a unique finding that may be part of syndrome may be difficult or nearly impossible to a syndrome. suspect. The typical facial features of up-slanting Deciding on laboratory testing comes next. If palpebral fissures, flat facies and small ears (less there are birth defects or significant unexplained than 3 cm in vertical length) are well known to dysmorphic features, a chromosome study needs clinicians. In addition, the gestalt of the facial to be undertaken. A satisfactory study is one that expression when the child cries is particularly has a minimum of about 550 bands. If a routine a useful finding. The hands also give important chromosome study is normal, additional studies clues to the diagnosis. Fifth finger clinodactyly, may be considered necessary looking for submi- usually bilateral, is very frequent. Simian lines are croscopic abnormalities by a technique called also common but are present in a significant fluorescence in situ hybridisation (FISH).5 This percentage of the general population. Significant technique is based on the hybridisation of a piece hypotonia may be the initial finding. The best- of labeled DNA, a probe, to a complementary area known characteristic associated birth defects seen on a chromosome. Specific probes are available for each chromosome. Submicroscopic deletions or rearrangements at the ends (telomeres) of the chromosome, performed as a telomeric FISH study, are a recognised cause of malformations.6 Obtaining plain X-rays are useful in more pre- cisely evaluating anomalies of the extremities. Certain anomalies are associated with defects in other areas of the body and therefore require evaluation. Examples are heart defects with thumb anomalies (HolteOram syndrome) and renal defects and optic nerve coloboma (renalecoloboma syn- drome).7 Cranial imaging for micro/macrocephaly and hypo/hypertelorism is also recommended. Where laboratory studies are normal and the diagnosis is unclear, a review of the literature and syndrome textbooks can be useful. Online Mendelian Inheritance in Man (OMIM), an on-line continuously updated catalog of human genes and genetic disorders, is an extremely useful human genetic resource. It is available free of charge. Additionally, there are software dysmorphology Figure 1 Up-slant to palpebral fissures and low nasal databases that can be purchased. bridge in Down syndrome. Common neonatal syndromes 223 in Down syndrome are duodenal atresia and atrio- tissue to tissue. That is to say, although 30% of the ventricular canal defects. Some form of congenital cells in the blood may be normal and 70% may be heart defect is by far the most common associated trisomy 21, it cannot be predicted what the birth defect, with about 40% of patients being percentage mix will be in the heart, kidney or, affected. Less well-known defects include Hirsch- most importantly, the brain. Given this uncertainty, sprung disease and congenital hypothyroidism. A it is best to not predict a much better prognosis prenatal finding of mild dilatation of the cerebral based on mosaicism. Life expectancy, given access ventricular atria (10e11 mm) without overt hydro- to appropriate medical and surgical interventions, cephalus is not infrequent. Special growth charts is in the range of 50e60 or more years. for Down syndrome patients are available, and the American Academy of Pediatrics has published health supervision guidelines. The confirmatory diagnosis for Down syndrome is Trisomy 13 and 18 a conventional chromosome study. Even in cases where the diagnosis is obvious, it is important to do These chromosomal disorders are, like Down the study. In about 95% of the cases (more with an syndrome, associated with advanced maternal older mother), the Down syndrome baby will have age. The incidence at birth has fallen over time a standard non-dysjunction karyotype (47,C21). as second-trimester ultrasound screening in preg- Doing chromosome studies on the parents in such nancy has become more routine and affected cases are not necessary. The risk of recurrence in pregnancies terminated. Expanded alpha fetopro- non-dysjunction Down syndrome is about 1% for tein screening will detect many cases of trisomy 18 younger women and is not increased above the but does not identify trisomy 13. Continuation of age-related Down syndrome risk for women in their pregnancy after confirmation of these trisomies is mid-30s and older. much rarer than with Down syndrome. Most fetuses Down syndrome will occasionally be due to with these trisomies do not survive to delivery. a translocation. A family history may be the first Multiple birth defects are common in both the clue if there is a history of other Down syndrome conditions but are much more frequent in trisomy offspring in the extended family. The usual situa- 13 (Figs. 2 and 3). Some babies with trisomy 18 tion is a Robertsonian translocation involving have little in the way of anomalies but may be small a fusion chromosome 14 and 21 (46,t14/21), but for gestational age. The combination of growth other combinations are possible. Chromosome retardation and polyhydramnios is especially sug- studies on the parents of a translocation Down gestive of trisomy 18. syndrome baby are very important for proper Both conditions have facial dysmorphism. The genetic counseling. The risk of recurrence where classical trisomy 13 baby will have microcephaly, one of the parents carries a balanced translocation iris coloboma, abnormally shaped ears and cleft lip ranges from less than 1% to as high as 10% based on the type of translocation and the sex of the carrier parent.8 A Down syndrome baby will occasionally be born with a 21/21 translocation (46,t21/21).
Recommended publications
  • Basic Concepts in Basic Concepts in Dysmorphology
    Basic Concepts in Dysmorphology Samia Temtamy* & Mona Aglan** *Professor of Human Genetics **Professor of Clinical Genetics Human Genetics & Genome Research Division National Research Centre, Cairo, Egypt OtliOutline y Definition of dysmorphology y Definition of terms routinely used in the description of birth defects y Impact of malformations y The difference between major & minor anomalies y Approach to a dysmorphic individual: y Suspicion & analysis y Systematic physical examination y CfitifdiConfirmation of diagnos is y Intervention y Summary 2 DfiitiDefinition of fd dysmorph hlology y The term “dysmorphology” was first coined by Dr. DidSithUSAiDavid Smith, USA in 1960s. y It implies study of human congenital defects and abnormalities of body structure that originate before birth. y The term “dysmorphic” is used to describe individuals whose physical fffeatures are not usually found in other individuals with the same age or ethnic background. y “Dys” (Greek)=disordered or abnormal and “Morph”=shape 3 Definition of terms routinely used in the d escri pti on of bi rth d ef ect s y A malformation / anomaly: is a primary defect where there i s a bas ic a ltera tion o f s truc ture, usuall y occurring before 10 weeks of gestation. y Examples: cleft palate, anencephaly, agenesis of limb or part of a limb. 4 Cleft lip & palate Absence of digits (ectrodactyly) y Malformation Sequence: A pattern of multiple defects resulting from a single primary malformation. y For example: talipes and hydrocephalus can result from a lumbar neural tube defect. Lumbar myelomeningeocele 5 y Malformation Syndrome: A pattern of features, often with an underlying cause, that arises from several different errors in morphogenesis.
    [Show full text]
  • 59. Lateral Facial Clefts
    59 LATERAL FACIAL CLEFTS LI OR TRANSVERSE CLEFTS ARE CONSIDERED THE RESULT OF FAILURE OF MESODERM MIGRATION OR MERGING TO OBLITERATE MANDIBULAR THE EMBRYONIC GROOVES BETWEEN THE MAXILLARY AND PROMINENCES TRANSVERSE CLEFTS AS THESE CLEFTS ARE RARE AND ALMOST EVERYBODY HAVING ONE HAS AND REPORTED IT IT IS POSSIBLE TO REVIEW MOST OF THE REPORTED CASES 769 DESCRIBED THE AFTER WHEN NOTE TREATMENT SPECIFIC CASE RECORDINGS IN WHAT MAY SEEM HELTERSKELTER ARRANGEMENT GENERALIZATIONS MAY BE OF VALUE IN 1891 ROSE NOTED FOR LONG THE VERY EXISTENCE OF THIS MACROSROMATOUS DEFORMITY WAS DOUBTED BUT CASES HAVE BEEN RECOGNIZED MORE OR LESS SINCE 1715 WHEN MURALT PICTURED IT FOR THE FIRST TIME ONE OF THE FIRST CASES REPORTED WAS BY VROLIK WHOIN HIS 1849 CLEFTS WORK GAVE SEVERAL ILLUSTRATIONS OF COMMISSURAL AS WELL AS OTHER DEFORMITIES OF THE FACE OTHER CASES WERE REPORTED BY REISSMANN IN 1869 AND MORGAN IN 1882 MACROSTOMIA OR COMMISSURAL HARELIP ACCORDING TO ROSE IS DIAMETER OF WHICH EVIDENCED BY AN INCREASED THE MOUTH MAY VARY IN FROM SLIGHT INCREASE TO CONSIDERABLE DISTANCE CASE RE PORTED BY RYND IN 1862 THE MOUTH OPENING EXTENDED AS FAR AS THE THE LEFT FIRST MOLAR ON THE RIGHT SIDE AND TO THE LAST MOLAR ON IN 1887 SUTTON PUBLISHED THE DRAWING OF CHILD WITH VERY LARGE RED CICATRIX THIS CLEFT THE ANGLES OF WHICH GRADUALLY PASSED INTO SCAR ENDED IN GAPING WOUND OVER THE TEMPORAL REGION EXTEND ING TO THE DURA MATER ROSE ALSO POINTED OUT MACROSROMA IS NOR ONLY ATTENDED BY GREAT DISFIGUREMENT HUT IS ALSO TROU BLESOME FROM THE IMPOSSIBILITY OF THE CHILD RETAINING
    [Show full text]
  • OCSHCN-10G, Medical Eligibility List for Clinical and Case Management Services.Pdf
    OCSHCN-10g (01 2019) (Rev 7-15-2017) Office for Children with Special Health Care Needs Medical Eligibility List for Clinical and Case Management Services BODY SYSTEM ELIGIBLE DISEASES/CONDITIONS ICD-10-CM CODES AFFECTED AUTISM SPECTRUM Autistic disorder, current or active state F84.0 Autistic disorder DISORDER (ASD) F84.3 Other childhood disintegrative disorder Autistic disorder, residual state F84.5 Asperger’s Syndrome F84.8 Other pervasive developmental disorder Other specified pervasive developmental disorders, current or active state Other specified pervasive developmental disorders, residual state Unspecified pervasive development disorder, current or active Unspecified pervasive development disorder, residual state CARDIOVASCULAR Cardiac Dysrhythmias I47.0 Ventricular/Arrhythmia SYSTEM I47.1 Supraventricular/Tachycardia I47.2 Ventricular/Tachycardia I47.9 Paroxysmal/Tachycardia I48.0 Paroxysmal atrial fibrillation I48.1 Persistent atrial fibrillationar I48.2 Chronic atrial fibrillation I48.3 Typical atrial flutter I48.4 Atypical atrial flutter I49.0 Ventricular fibrillation and flutter I49.1 Atrial premature depolarization I49.2 Junctional premature depolarization I49.3 Ventricular premature depolarization I49.49 Ectopic beats Extrasystoles Extrasystolic arrhythmias Premature contractions Page 1 of 28 OCSHCN-10g (01 2019) (Rev 7-15-2017) Office for Children with Special Health Care Needs Medical Eligibility List for Clinical and Case Management Services I49.5 Tachycardia-Bradycardia Syndrome CARDIOVASCULAR Chronic pericarditis
    [Show full text]
  • Dysmorphology Dysmorphism
    Dysmorphology Carolyn Jones, M.D., PhD Dysmorphism Morphologic developmental abnormalities. This may been seen in many syndromes of genetic or environmental origin. 1 Malformation A recognized dysmorphic feature. A structure not formed correctly. This can either be the cause of genetic factors or environment. 2 Deformation An external force resulting in the inability of a structure to form correctly. Example: club feet in a woman with oligohydramnios, fibroid tumors or multiple gestation. Disruption Birth defect resulting from the destruction of a normally forming structure. This can be caused by vascular occlusion, teratogen, or rupture of amniotic sac (amniotic band syndrome). 3 Common Dysmorphic features Wide spacing between eyes, hypertelorism Narrow spacing between eyes, hypotelorism Palpebral fissure length Epicanthal folds Common Dysmorphic Features Philtrum length Upper lip Shape of nose 4 Syndrome A number of malformations seen together Cause of Syndromes Chromosomal aneuploidy Single Gene abnormalities Teratogen exposure Environmental 5 Chromosomal Aneuploidy Nondisjuction resulting in the addition or loss of an entire chromosome Deletion of a part of a chromosome Microdeletion syndromes (small piece missing which is usually only detected using special techniques) 6 Common Chromosomal Syndromes caused by Nondisjuction Down syndrome (trisomy 21) Patau syndrome (trisomy 13) Edwards syndrome (trisomy 18) Turner syndrome (monosomy X) Klinefelter syndrome (47,XXY) Clinical Features at birth of Down syndrome Low set small ears Hypotonia Simian crease Wide space between first and second toe Flat face 7 Clinical Features of Down Syndrome Small stature Congenital heart defects (50-70%) Acquired and congenital hearing impairment. Duodenal atresia Hirshprungs disease Trisomy 13 Occurs in 1/5000 live births.
    [Show full text]
  • 2018 Etiologies by Frequencies
    2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada
    [Show full text]
  • Koolen-De Vries Syndrome: Clinical Report of an Adult and Literature Review
    Case Report Cytogenet Genome Res 2016;150:40–45 Accepted: July 25, 2016 DOI: 10.1159/000452724 by M. Schmid Published online: November 17, 2016 Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review Claudia Ciaccio Chiara Dordoni Marco Ritelli Marina Colombi Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia , Italy Key Words Koolen-de Vries syndrome (KdS, also known as 17q21.31 · Deletion · Joint hypermobility · KANSL1 17q21.31 microdeletion syndrome, OMIM #610443) is a rare genetic disorder (prevalence 1/16,000) characterized by typical facial dysmorphisms, cardiac and renal defects, Abstract developmental delay, and intellectual disability of vari- Koolen-de Vries syndrome (KdS) is a rare genetic condition able level [Tan et al., 2009]. The disorder was initially de- characterized by typical facial dysmorphisms, cardiac and re- scribed as a form of mental retardation caused by a 440– nal defects, skeletal anomalies, developmental delay, and in- 680-kb deletion in the 17q21.31 region, typically encom- tellectual disability of variable level. It is caused by a 440– passing 5 genes: CRHR1 (OMIM 122561), MAPT 680-kb deletion in the 17q21.31 region, encompassing (OMIM 157140), IMP5 (OMIM 608284), STH (OMIM CRHR1 , MAPT , IMP5 , STH , and KANSL1 , or by an intragenic 607067), and KANSL1 (OMIM 612452)* [Koolen et al., KANSL1 mutation. The majority of the patients reported are 2006]. Recently,* it has been shown* that haploinsufficien- pediatric or young adults, and long-term studies able to de- cy* of KANSL1 by itself, due to single* nucleotide variants fine the prognosis of the disease are lacking.
    [Show full text]
  • Phenotypic and Genotypic Characterisation of Noonan-Like
    1of5 ELECTRONIC LETTER J Med Genet: first published as 10.1136/jmg.2004.024091 on 2 February 2005. Downloaded from Phenotypic and genotypic characterisation of Noonan-like/ multiple giant cell lesion syndrome J S Lee, M Tartaglia, B D Gelb, K Fridrich, S Sachs, C A Stratakis, M Muenke, P G Robey, M T Collins, A Slavotinek ............................................................................................................................... J Med Genet 2005;42:e11 (http://www.jmedgenet.com/cgi/content/full/42/2/e11). doi: 10.1136/jmg.2004.024091 oonan-like/multiple giant cell lesion syndrome (NL/ MGCLS; OMIM 163955) is a rare condition1–3 with Key points Nphenotypic overlap with Noonan’s syndrome (OMIM 163950) and cherubism (OMIM 118400) (table 1). N Noonan-like/multiple giant cell lesion syndrome (NL/ Recently, missense mutations in the PTPN11 gene on MGCLS) has clinical similarities with Noonan’s syn- chromosome 12q24.1 have been identified as the cause of drome and cherubism. It is unclear whether it is a Noonan’s syndrome in 45% of familial and sporadic cases,45 distinct entity or a variant of Noonan’s syndrome or indicating genetic heterogeneity within the syndrome. In the cherubism. 5 study by Tartaglia et al, there was a family in which three N Three unrelated patients with NL/MGCLS were char- members had features of Noonan’s syndrome; two of these acterised, two of whom were found to have mutations had incidental mandibular giant cell lesions.3 All three in the PTPN11 gene, the mutation found in 45% of members were found to have a PTPN11 mutation known to patients with Noonan’s syndrome.
    [Show full text]
  • REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia A. M. Holder,* M. Klaassens,* D. Tibboel, A. de Klein, B. Lee, and D. A. Scott Congenital diaphragmatic hernia (CDH) is a relatively common birth defect associated with high mortality and morbidity. Although the exact etiology of most cases of CDH remains unknown, there is a growing body of evidence that genetic factors play an important role in the development of CDH. In this review, we examine key findings that are likely to form the basis for future research in this field. Specific topics include a short overview of normal and abnormal diaphragm development, a discussion of syndromic forms of CDH, a detailed review of chromosomal regions recurrently altered in CDH, a description of the retinoid hypothesis of CDH, and evidence of the roles of specific genes in the development of CDH. Congenital diaphragmatic hernia (CDH [MIM 142340, Overview of Normal and Abnormal Diaphragm 222400, 610187, and 306950]) is defined as a protrusion Development of abdominal viscera into the thorax through an abnormal opening or defect that is present at birth. In some cases, this protrusion is covered by a membranous sac. In con- The development of the human diaphragm occurs be- trast, diaphragmatic eventrations are extreme elevations, tween the 4th and 12th wk of gestation. Traditional views rather than protrusions, of part of the diaphragm that is of diaphragm development suggest that the diaphragm 9 often atrophic and abnormally thin. CDH is a relatively arises from four different structures.
    [Show full text]
  • Genetics of Congenital Hand Anomalies
    G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights.
    [Show full text]
  • CHARGE Syndrome
    orphananesthesia Anaesthesia recommendations for CHARGE syndrome Disease name: CHARGE syndrome ICD 10: Q87.8 Synonyms: CHARGE association; Hall-Hittner syndrome Disease summary: CHARGE syndrome was initially defined as a non-random association of anomalies: - Coloboma - Heart defect - Atresia choanae (choanal atresia) - Retarded growth and development - Genital hypoplasia - Ear anomalies/deafness In 1998, an expert group defined the major (the classical 4C´s: Choanal atresia, Coloboma, Characteristic ear and Cranial nerve anomalies) and minor criteria of CHARGE syndrome [1]. In 2004, mutations in the CHD7 gene were identified as the major cause. The inheritance pattern is autosomal dominant with variable expressivity. Almost all mutations occurs de novo, but parent-to-child transmission has occasionally been reported [2]. Clinical criteria for CHARGE syndrome [1] Major criteria: • Coloboma • Choanal Atresia • Cranial nerve anomalies • Abnormalities of the inner, middle, or external ear Minor criteria: • Cardiaovascular malformations • Genital hypoplasia or delayed pubertal development • Cleft lip and/or palate • Tracheoesophageal defects • Distinctive CHARGE facies • Growth retardation • Developmental delay Occasional: • Renal anomalies: duplex system, vesicoureteric reflux • Spinal anomalies: scoliosis, osteoporosis • Hand anomalies 1 • Neck/shoulder anomalies • Immune system disorders Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome [1]. CHARGE syndrome
    [Show full text]
  • MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002
    MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002 Michigan Department of Community Health Community Public Health Agency and Center for Health Statistics 3423 N. Martin Luther King Jr. Blvd. P. O. Box 30691 Lansing, Michigan 48909 Michigan Department of Community Health James K. Haveman, Jr., Director B-274a (March, 2002) Authority: P.A. 236 of 1988 BIRTH DEFECTS REGISTRY MICHIGAN DEPARTMENT OF COMMUNITY HEALTH BIRTH DEFECTS REGISTRY STAFF The Michigan Birth Defects Registry staff prepared this manual to provide the information needed to submit reports. The manual contains copies of the legislation mandating the Registry, the Rules for reporting birth defects, information about reportable and non reportable birth defects, and methods of reporting. Changes in the manual will be sent to each hospital contact to assist in complete and accurate reporting. We are interested in your comments about the manual and any suggestions about information you would like to receive. The Michigan Birth Defects Registry is located in the Office of the State Registrar and Division of Health Statistics. Registry staff can be reached at the following address: Michigan Birth Defects Registry 3423 N. Martin Luther King Jr. Blvd. P.O. Box 30691 Lansing MI 48909 Telephone number (517) 335-8678 FAX (517) 335-9513 FOR ASSISTANCE WITH SPECIFIC QUESTIONS PLEASE CONTACT Glenn E. Copeland (517) 335-8677 Cytogenetics Laboratory Reporting Instructions I. INTRODUCTION This manual provides detailed instructions on the proper reporting of diagnosed birth defects by cytogenetics laboratories. A report is required from cytogenetics laboratories whenever a reportable condition is diagnosed for patients under the age of two years.
    [Show full text]
  • CHARGE Factsheet 3 Clinical Diagnosis and Features
    The Information Pack CHARGE for Practitioners Factsheet 3 CHARGE syndrome: major and minor medical diagnostic criteria plus later onset features DR JEREMY KIRK, MD, FRCP, FRCPCH, Consultant Paediatric Endocrinologist, Birmingham Children’s Hospital Original diagnostic criteria The initial association of coloboma and choanal atresia with other congenital abnormalities was first described by Hall and separately Hittner et al. in 1979 (Hall, 1979; Hittner et al., 1979). In 1981 there was further description and expansion of the condition (Pagon et al., 1981). It was at this stage that the acronym CHARGE (C–coloboma, H–heart disease, A–atresia choanae, R–retarded growth and retarded development and/or CNS anomalies, G–genital hypoplasia, and E–ear anomalies and/or deafness) was made. In order to make the diagnosis of CHARGE syndrome, historically four out of six of the features of the acronym needed to be fulfilled, although one should be either choanal atresia or a coloboma (Pagon et al., 1981). From association to syndrome been several attempts to refine the diagnostic criteria, Initially CHARGE was described as an association; namely by Blake et al. (1998) and Verloes (2005). Both a nonrandom collection of birth defects, rather than of these use major features which are very specific for a syndrome, which is a more recognisable pattern of CHARGE syndrome, along with other minor features. birth defects (often with a known genetic cause). With the identification of the gene CHD7 in 2004 (Vissers The criteria suggested by Blake et al. consist of four et al., 2004) it has now been renamed a syndrome, major ‘C’s: as CHD7 is mutated in at least 60% of patients with 1.
    [Show full text]