Semiconductors

Total Page:16

File Type:pdf, Size:1020Kb

Semiconductors SEMICONDUCTORS MCU/MPU/DSP Murata .................................371 Infineon ............................560, 561 Analog Devices Inc. ...........187, 188, 189, 190 NXP Semiconductor ............. 372, 373, 374, MA-COM ...............................562 Cypress Semiconductor .......191, 192, 193, 194 . 375, 376, 377 NXP Semiconductor ..................563, 564 Freescale Semiconductor ..... 195, 196, 197, 198, ON Semiconductor ...............378, 379, 380 ON Semiconductor ...........565, 566, 567, 568 . 199, 200, 201, 202, 203, Plessey ................................381 Panasonic Semiconductor ..........569, 570, 571 . 204, 205, 206, 207, 208 Silicon Labs .............................382 Power Integrations. 572 FTDI ...................................209 Vishay / Siliconix .................410, 411, 412 Skyworks ...........................573, 574 Intel ...........................210, 211, 212 Skyworks ...........................383, 384 STMicroelectronics ...................575, 576 Microchip Technology ............ 213, 214, 215, STMicroelectronics .......385, 386, 387, 388, 389 Vishay General Semiconductor ......... 577, 578, . 216, 217, 218 Texas Instruments ........... 390, 391, 392, 393, . 579, 580 NXP Semiconductors .........219, 220, 221, 222 . 394, 395, 396, 397, 398, 399, 400, 401, Vishay Semiconductors. 581, 582, 583, Silicon Labs .........223, 224, 225, 226, 227, 228 . 402, 403, 404, 405, 406, 407, 408, 409 . 584, 585, 586 STMicroelectronics ...............229, 230, 231 Amplifier ICs Transistors Olimex Ltd ..............................232 Analog Devices Inc. ...... 414, 415, 416, 418, 419, CEL ...................................587 Texas Instruments ............... 233, 234, 235, . ..........420, 421, 422, 423, 424, 425, 426, 427 Fairchild Semiconductor ...........588, 589, 590 . 236, 237, 238, 239, 240 Avago .................................428 Infineon Technologies. 591, 592 Zilog .......................241, 242, 243, 244 CEL ...............................429, 430 International Rectifier. 593 Programmers Intersil .................................431 MA-COM ...............................594 Segger. 245 Maxim Integrated .................432, 433, 434 NXP Semiconductor ......................595 Memory Microchip Technology .....................435 ON Semiconductor .......596, 597, 598, 599, 600 Apacer Technology Inc. ....................246 ON Semiconductor .......................436 Panasonic Semiconductor ......... 601, 602, 603, Cypress Semiconductor ...........247, 248, 249 Skyworks ...............................437 . 604, 605, 606 Greenliant ..............................250 STMicroelectronics ...............438, 439, 440 STMicroelectronics ...................607, 608 IDT ....................................251 Texas Instruments ....... 441, 442, 443, 444, 445, MOSFETs Microchip Technology .........252, 253, 254, 255 . 446, 447, 448, 449, 450, 451, Fairchild Semiconductor .......... 609, 610, 611, ON Semiconductor / Catalyst ...........256, 257 . 452, 453, 454, 455 . 612, 613, 614 Spansion ...............................258 TriQuint Semiconductor ....................456 Infineon Technologies. 615, 616, 617, 618 STMicroelectronics ...................259, 260 Power Management International Rectifier. 619, 620, 621, 622, 623 Logic - Programmable Regulators, References and Comparators NXP Semiconductors .................624, 625 Altera ..................261, 262, 263, 264, 265 Analog Devices Inc. .......... 457, 458, 459, 460, ON Semiconductor ...................626, 627 Logic - Standard . 461, 462, 463, 464, 465 Panasonic Semiconductor ..................628 Fairchild Semiconductor ...............266, 267 ELMOS ................................466 STMicroelectronics .............. 629, 630, 631, IDT ....................................268 Exar. 467 . 632, 633, 634 NXP Semiconductors ............ 269, 270, 271, Fairchild Semiconductor .......... 468, 469, 470, Texas Instruments ........................635 . 272, 273, 274 . 471, 472 Vishay Semiconductors. 636, 637, ON Semiconductor ...................275, 276 Infineon ............................473, 474 . 638, 639, 640 STMicroelectronics .......................277 International Rectifier. 475, 476, 477 Vishay / Siliconix ............ 641, 642, 643, 644, Texas Instruments ............... 278, 279, 280, Intersil .............................478, 479 . 645, 646, 647, 648 . 281, 282, 283 Maxim Integrated ........ 480, 481, 482, 483, 484, Thyristors Analog ICs & Mixed Signal . 485, 486, 487, 488, 489, 490, 491 Ametherm ..........................649, 650 AMS ...................................413 Microchip. 492, 493, 494 Bourns. 651 Analog Devices Inc. ...... 284, 285, 286, 287, 288, Monolithic Power Systems .........495, 496, 497 Littelfuse .......................652, 653, 654 . ..... 289, 290, 291, 292, 293, 294, 295, 296, 297, NXP Semiconductors .....................498 ON Semiconductor .......................655 . ..... 298, 299, 300, 301, 302, 303, 304, 305, 306, ON Semiconductor .............. 499, 500, 501, STMicroelectronics ...................656, 657 . ..... 307, 308, 309, 310, 311, 312, 313, 314, 315, . 502, 503, 504, 505, 506 Transient Protection . ......................316, 317, 318, 319, 320 Power Integrations. 507, 508, 509 AVX ...................................658 Azoteq .................................321 Silicon Labs .....................510, 511, 512 Bourns. 659, 660, 661, 662, 663, 664, 665 Cirrus Logic .....................322, 323, 324 STMicroelectronics .......... 513, 514, 515, 516, Cooper Bussmann ........................666 Cypress Semiconductor ...............325, 326 . 517, 518, 519, 520, 521 Fairchild Semiconductor ...................670 Exar. 327, 328, 329, 330, 331 Texas Instruments ........... 522, 523, 524, 525, Littelfuse ...................671, 672, 673, 674 Fairchild Semiconductor ...............332, 333 . 526, 527, 528, 529, 530, 531, 532, 533, 534, NXP Semiconductors .................675, 676 Freescale Semiconductor ..................334 . 535, 536, 537, 538, 539, 540, 541, 542, 543, ON Semiconductor ...........667, 668, 669, 677 IDT ................335, 336, 337, 338, 339, 340 . 544, 545, 546, 547, 548, 549, 550, 551, 552 STMicroelectronics ...........678, 679, 680, 681 Intersil .............................341, 342 Vishay / Siliconix .........................553 TE Connectivity ..........................682 Kionix ..................................343 Discrete Semiconductor Texas Instruments ........................683 Maxim Integrated ........ 344, 345, 346, 347, 348, Diodes and Rectifiers Vishay General Semiconductor ..........686, 687 . 349, 350, 351, 352, 353, 354, 355, 356, 357, Bourns. 554 Vishay Semiconductor .................684, 685 . 358, 359, 360, 361, 362, 363, 364, 365 Fairchild Semiconductor .......... 555, 556, 557, Microchip. 366, 367, 368, 369, 370 . 558, 559.
Recommended publications
  • Bluetooth Low Energy Software Release Notes
    BLUEGIGA BLUETOOTH LOW ENERGY SOFTWARE RELEASE NOTES Wednesday, 2 December 2020 Version 6.1 Table of Contents 1 Changes: 1.10.0 (Build 153) compared to 1.9.0 (Build 150) ______________________________________ 4 2 Changes: 1.9.0 (Build 150) compared to 1.8.0 (Build 143) _______________________________________ 5 3 Changes: 1.8.0 (Build 143) compared to 1.7.0 (Build 142) _______________________________________ 6 4 Changes: 1.7.0 (Build 142) compared to 1.6.0 (Build 140) _______________________________________ 7 5 Changes: 1.6.0 (Build 140) compared to 1.5.0 (Build 137) _______________________________________ 8 6 Changes: 1.5.0 (Build 137) compared to 1.4.2 (Build 130) _______________________________________ 9 7 Changes: 1.4.2 (Build 130) compared to 1.4.1 (Build 128) ______________________________________ 10 8 Changes: 1.4.1 (Build 128) compared to 1.4.0 (Build 127) ______________________________________ 11 9 Changes: 1.4.0 (Build 127) compared to 1.3.2 (Build 122) ______________________________________ 12 10 Changes: 1.3.2 (Build 122) compared to 1.3.1 (Build 119) _____________________________________ 13 11 Changes: 1.3.1 (Build 119) compared to 1.3.1 (Build 118) _____________________________________ 14 12 Changes: 1.3.1 (Build 118) compared to 1.3.0 Beta (Build 110) _________________________________ 15 13 Changes: 1.3.0 Beta (Build 110) compared to 1.2.2 (Build 100) _________________________________ 16 14 Changes: 1.2.2 (Build 100) compared to 1.2.1 (Build 91) ______________________________________ 17 15 Changes: 1.2.1 (Build 91) compared
    [Show full text]
  • TS10: Ember Em35x NCP Host (STM32)
    TS10 ® EMBER EM35X NCP HOST (STM32) MODULE TECHNICAL SPECIFICATION When combined with an Ember EM35x NCP Breakout Board, the Ember STM32 NCP Host Module offers a complete ZigBee wireless solution for development and deployment of a low-data-rate, low-power ZigBee application. The STM32 microprocessor is part of the two-layer (FR4-based) host module that connects to the EM35x NCP Breakout Board through the board-to-board connectors. This document provides the technical specification for the STM32 EM35x NCP Host Module. It describes the board- level interfaces as well as the key performance parameters. In addition, it provides the necessary information for developer to validate their application designs using the STM32 EM35x NCP Host Module. New in This Revision Document renumbering. Contents 1 STM32 Host Module Features ......................................................................................................................... 2 2 Components ................................................................................................................................................... 3 2.1 STM32 Microcontroller ............................................................................................................................. 4 2.2 EM35x NCP Breakout Board interface connector (J1-J2) .......................................................................... 4 2.3 JTAG Programming and Debug Connector (J3)........................................................................................ 6 2.4 Unused STM32 GPIO
    [Show full text]
  • AN669: Integrating Silicon Labs Sim3xxxx Devices Into the Keil Μvision®
    AN669 INTEGRATING SILICON LABS SiM3XXXX DEVICES INTO THE KEIL µVISION® IDE 1. Introduction This application note describes how to configure and use the Keil µVision® Integrated Development Environment (IDE) with Silicon Laboratories Precision32™ 32-bit microcontrollers (SiM3xxxx). 2. Key Points Key points described in this application note include: Generating a blank project in Keil µVision Configuring a µVision project for use with Silicon Laboratories SiM3xxxx devices Using the µVision IDE to build, download, run, and debug a project Using the System Viewer Windows and Debug (Print) Viewer 3. Creating a Project A project is necessary in order to build an example and download the firmware image to the MCU. To create a project in µVision: 1. Under the Project menu, select New µVision Project. After naming your new project, select SiLabs SiM3x Devices in the Select a CPU Data Base File dialog and click OK. 2. Expand the Silicon Laboratories data base to open a list of supported MCUs, select the appropriate MCU, and click OK. Figure 1. Selecting a SiM3x Device After creating your blank project, there will be an empty project in the Project Window. The next step is to configure the project options. Rev. 0.1 2/12 Copyright © 2012 by Silicon Laboratories AN669 AN669 4. Configuring Options for Target Specific configurations are required in order to communicate with the MCU using µVision. Some of the options are preconfigured after selecting a device under the Device tab, but some modifications are required. This section describes the required settings in all of the configuration tabs within the ProjectOptions for Target dialog; tabs that do not require any changes are explicitly noted.
    [Show full text]
  • Si106x Development Kits User's Guide
    Si106x-DK Si106X DEVELOPMENT KITS USER’S GUIDE 1. Kits Overview This user's guide describes the development kits of the Si106x Wireless MCU family. The latest version of this user guide is available online at http://www.silabs.com/products/wireless/wirelessmcu/Pages/default.aspx. Each kit contains two RF nodes based on the Wireless Motherboard to support evaluation and development of sub-GHz RF links with the different Wireless MCUs. WMCU pico board content of the different kits is listed in Table 1, and content common to all the kits is listed in Table 2. Table 1. WMCU Pico Boards of the Si106x Development Kits Qty Description Part Number Si1060 490 MHz Wireless MCU Development Kit 1060-490-DK 2 Si1060 490 MHz PICO Board 1060-PCE20C490 Si1060 915 MHz Wireless MCU Development Kit 1060-915-DK 2 Si1060 915 MHz PICO Board 1060-PCE20C915 Si1062 868 MHz Wireless MCU Development Kit 1062-868-DK 2 Si1062 868 MHz PICO Board 1062-PCE13D868 Si1064 434 MHz Wireless MCU Development Kit 1064-434-DK 2 Si1064 434 MHz PICO Board 1064-PCE10D434 Si1064 868 MHz Wireless MCU Development Kit 1064-868-DK 2 Si1064 868 MHz PICO Board 1064-PCE10D868 Si1064 915 MHz Wireless MCU Development Kit 1064-915-DK 2 Si1064 915 MHz PICO Board 1064-PCE10D915 Table 2. Common Kit Content Qty Description Part Number 2 Wireless Motherboard MSC-WMB912 2 USB cable (USBA-USB mini) 2 Antenna with SMA connection MSC-AT50-XXX 4 AA Battery 1 Si106x Development Kit User’s Guide Rev. 0.4 12/17 Copyright © 2017 by Silicon Laboratories Si106x-DK Si106x-DK 2.
    [Show full text]
  • TJR-1197 Goodbye.Pdf
    CYPRESS SEMICONDUCTOR CORPORATION Internal Correspondence Date: August 19, 2016 WW: 3316 To: All Cypress Employees Author: T.J. Rodgers Author File#: TJR#1197 Subject: Goodbye cc: BoD, Jim Collins, Larry Sonsini It’s 2:30 in the afternoon on August 17, my last official day at Cypress. After packing my stuff, I realized there were goodbyes to write. So, this won’t be a typical “TJ memo,” revised 10 times, logical and filled with fact-checked data; it will be more stream-of-consciousness in style. In a way, writing this memo is like talking to your wife of 34 years, while she’s on her deathbed. What do you say? I’ve enjoyed being with you? We’ve done a lot of good things together? There are really no appropriate words. But, perhaps there are. In the 1970 movie Patton, as the General leaves his command, he says, “Gentlemen, all good things must come to an end. And the best thing that has happened to me in my life has been the honor and privilege of commanding the 3rd Army. Goodbye, and God bless you.” This is the way I feel about Cypress. We have a lot to be proud of. Cypress was founded in December 1982, when there were 59 publically traded American chip companies. Today, only 15 of them are left—and we are one of the 15. That statement applies to every Cypress employee, whether you came from old Cypress, Spansion, Fujitsu, Broadcom or Ramtron. Each of us has made it in the industry for a long time; we all now fight together under one flag; and we’re all still around because we’ve earned the right to be.
    [Show full text]
  • Pcn Wafer Foundry Site Qualification Template
    Cypress Semiconductor Corporation, 198 Champion Court, San Jose, CA 95134. Tel: (408) 943-2600 PRODUCT CHANGE NOTIFICATION PCN: PCN170501 Date: February 28, 2017 Subject: Qualification of Texas Instruments’ DMOS6 as an Additional Wafer Fab Site, Cypress’ Test 25 as an Additional Wafer Sort Site for 2Mb F-RAM Serial Product Family To: FUTURE ELECTRONICS FUTURE ELE [email protected] Change Type: Major Description of Change: Cypress announces the qualification of Texas Instruments DMOS6 as an additional wafer fab site and Test 25 as an additional wafer sort site for its 2Mb F-RAM Serial Product Family. This qualification is part of the flexible manufacturing initiative which allows Cypress to meet its delivery commitments in dynamic, changing market conditions. Benefit of Change: By adding the DMOS6 and Test 25 sites, Cypress will have the added capability to meet upside market demand, and ensure consistent and reliable delivery to customers. Affected Parts: 6 Part Numbers Affected: See the attached ‘Affected Parts List’ file for a list of all part numbers affected by this change. Note that any new parts that are introduced after the publication of this PCN will include all changes outlined in this PCN. Qualification Status: The changes listed in this PCN have been qualified through a series of tests documented in the Qualification Test Plan (QTP) reports indicated in the table below. These qualification reports can be found as attachments to this notification or by visiting www.cypress.com and typing the QTP number in the keyword search window. Qualification QTP Report Number TI DMOS6 Wafer Fab for 64Kb F-RAM Serial Industrial-Grade 143905 FRAM Wafer Sort at Test 25 Site Sample Status: Qualification samples are not built ahead of time for all part numbers affected by this change.
    [Show full text]
  • Albert Shih ASSOCIATE
    Albert Shih ASSOCIATE Litigation Palo Alto [email protected] 650-849-3022 FOCUS AREAS EXPERIENCE Albert Shih is an associate in the Palo Alto office of Wilson Sonsini Goodrich & Rosati, Litigation where his practice focuses on intellectual property litigation and counseling. He has litigated Patent Litigation more than 25 patent cases before federal district courts, the International Trade Commission, and Judicial Arbitration and Mediation Services, including a $31 million judgment obtained for his client in the field of telecommunication protocol. He also regularly advises clients on company intellectual property strategy, technology transactions, licensing negotiation, FRAND-rate setting for standard-essential patents, and patent prosecution matters. Prior to law school, Albert was a design engineer at Intel, where he taught courses at Intel University on chipset design. His field experience and knowledge allow him to understand and appreciate the unique business and technical perspective associated with leaders and innovators in the field of mobile telecommunication protocol, baseband processor, liquid crystal display, semiconductor fabrication, digital signal processors, digital receivers and tuners, image sensors, Internet security software, and various digital and analog circuit designs. Educated in Taiwan and Singapore in his early years, Albert is fluent in Mandarin Chinese. CREDENTIALS Education J.D., Loyola Law School, Los Angeles B.S., Electrical Engineering, University of Michigan, Ann Arbor Associations and Memberships Member, American Bar Association, Intellectual Property Section Member, American Intellectual Property Law Association Member, Asia Pacific Intellectual Property Association Member, International Trade Commission Trial Lawyer Association Honors Named to the 2015-2018 editions of the "Rising Stars" list published by Northern California Super Lawyers Admissions State Bar of California U.S.
    [Show full text]
  • ARM® Cortex® -M3 & M4 MCU Architecture
    ARM® Cortex ® -M3 & M4 MCU Architecture Introduction Many embedded developers are familiar with the ARM Cortex processor architecture, but few have the opportunity to become intimately acquainted enough of this popular architecture to take full advantage of its unique features and capabilities. This is especially true for the new ARM Cortex-M4 processor, which boasts an improved architecture, native digital signal processing (DSP) capabilities and an optional floating-point accelerator, which a savvy programmer or hardware engineer can exploit to their ad- vantage. Let’s take a closer look at some of the more interesting (and often-overlooked) features found in Cortex-M3 based microcontrollers (MCUs) as well as new M4 variants. Since many target applications for Cortex-M based MCUs are portable and derive their power from bat- teries or energy harvesting systems, most of the ideas we will explore involve techniques for reducing a design’s overall energy consumption. In many cases, however, these energy conservation techniques are also helpful tools for designing processor-optimized applications that provide: • More cost-effective solutions • More processing margin available for upgrades and new features • Performance and features that help products stand out in crowded markets. ARM Cortex Basics Much like the original 16-bit processor cores created by Advanced RISC Machines (ARM) in the 1980s, the ARM Cortex series is based on a Harvard-style RISC machine with a modest silicon footprint that en- ables high performance as well as code
    [Show full text]
  • Exhibit 21.1 SUBSIDIARIES of CYPRESS SEMICONDUCTOR
    Exhibit 21.1 SUBSIDIARIES OF CYPRESS SEMICONDUCTOR CORPORATION Name Jurisdiction of Incorporation Cypress Semiconductor Corporation United States Of America Cascade Semiconductor Corporation United States Of America CY Holding One LLC United States Of America CY Holding Two LLC United States Of America CY Support Mexico Cyland Corporation Philippines Cypress Manufacturing, Ltd. Cayman Islands Cypress Microsystems, Inc. United States Of America Cypress Semiconductor (China) Company Limited China Cypress Semiconductor (Luxembourg) Sarl Luxembourg Lara (CSC) -Mauritius LLC Mauritius Cypress Semiconductor (Minnesota) Inc. United States Of America Cypress Semiconductor (Scandinavia) AB Sweden Cypress Semiconductor (Switzerland) Sarl Switzerland Cypress Semiconductor (Texas) Inc. United States Of America Cypress Semiconductor (Thailand) Co., Ltd. Thailand Cypress Semiconductor (UK) Limited United Kingdom Cypress Semiconductor Canada Canada Cypress Semiconductor Corporation (Belgium) Belgium Cypress Semiconductor GmbH Germany Cypress Semiconductor Holding One LLC United States Of America Cypress Semiconductor International (Hong Kong) Limited Hong Kong Cypress Semiconductor International Sales B.V. Netherlands Cypress Semiconductor Intl Inc. United States Of America Cypress Semiconductor Ireland Ireland Cypress Semiconductor Italia S.r.l. Italy Cypress Semiconductor K.K. Japan Japan Cypress Semiconductor Korea Ltd. Korea Cypress Semiconductor Phil. Headquarters Ltd. Cayman Islands Cypress Semiconductor Procurement LLC United States Of America Cypress Semiconductor Round Rock, Inc. United States Of America Cypress Semiconductor SARL France Cypress Semiconductor Singapore Pte. Ltd Singapore Cypress Semiconductor Solutions Mexico Cypress Semiconductor Taiwan Taiwan Cypress Semiconductor Tech. India Ltd. India Cypress Semiconductor Technology (Shanghai) Co., Ltd. China Cypress Semiconductor Technology Ltd. Cayman Islands Cypress Semiconductor World Trade Corp. Cayman Islands Cypress EnviroSystems Corporation United States Of America Cypress Venture Fund I, L.L.C.
    [Show full text]
  • Cadence Design Systems, Inc. 2020 Proxy Statement
    NOTICE OF 2020 ANNUAL MEETING OF STOCKHOLDERS The 2020 Annual Meeting of Stockholders of CADENCE DESIGN SYSTEMS, INC., a Delaware corporation, will be held as follows: When: Where: April 30, 2020 Cadence San Jose Campus 1:00 p.m. Pacific Time 2655 Seely Avenue, Building 10 San Jose, California 95134 Items of Business: The purpose of the 2020 Annual Meeting of Stockholders is to consider and take action on the following: 1. To elect the nine directors named in the proxy statement to serve until the 2021 Annual Meeting of Stockholders and until their successors are elected and qualified, or until the directors’ earlier death, resignation or removal. 2. To approve the amendment of the Omnibus Equity Incentive Plan. 3. To vote on an advisory resolution to approve named executive officer compensation. 4. To ratify the selection of PricewaterhouseCoopers LLP as the independent registered public accounting firm of Cadence for its fiscal year ending January 2, 2021. 5. To vote on a stockholder proposal regarding special stockholder meetings, if properly presented at the meeting. 6. To transact such other business as may properly come before the meeting or any adjournment or postponement thereof. These items of business are more fully described in the proxy statement accompanying this notice. Record Date: Holders of Cadence Design Systems, Inc. common stock at the close of business on March 2, 2020 are entitled to notice of and to vote at the 2020 Annual Meeting of Stockholders and any adjournment or postponement thereof. How to Vote: Your vote is important to us. Please cast your vote promptly via the internet, telephone or mail.
    [Show full text]
  • Bluetooth Low Energy Profile Toolkit Developer Guide
    BLUETOOTH LOW ENERGY PROFILE TOOLKIT DEVELOPER GUIDE Wednesday, 2 December 2020 Version 3.12 Table of Contents 1 Version history _________________________________________________________________________ 4 2 Introduction ___________________________________________________________________________ 5 2.1 Understanding Profile, Services, Characteristics and the Attribute Protocol _____________________ 5 2.1.1 GATT-Based Bluetooth Profiles ________________________________________________ 5 2.1.2 Services ___________________________________________________________________ 5 2.1.3 Characteristics ______________________________________________________________ 5 2.1.4 The Attribute Protocol ________________________________________________________ 6 2.1.5 The Profile Toolkit ___________________________________________________________ 7 3 GATT Database file (gatt.xml) _____________________________________________________________ 8 3.1 Generic GATT Limitations ___________________________________________________________ 8 3.2 Defining Services __________________________________________________________________ 9 3.2.1 <service>: Service Definition element ____________________________________________ 9 3.2.2 <description>: Service Description element ______________________________________ 10 3.2.3 <include>: Service Include element ____________________________________________ 10 3.3 Defining Characteristics ____________________________________________________________ 11 3.3.1 <characteristic>: Characteristic Definition element ________________________________
    [Show full text]
  • Cypress Semiconductor Corporation Corporate
    CYPRESS SEMICONDUCTOR CORPORATION CORPORATE GOVERNANCE GUIDELINES A. RESPONSIBILITIES OF THE BOARD OF DIRECTORS 1. The primary responsibilities of the Board of Directors (the “Board”) are oversight, counseling and direction to the management of Cypress Semiconductor Corporation (also herein referred to as the “Corporation” or “Company”) in the interest and for the benefit of the Corporation's stockholders, and overseeing the Company’s adherence to corporate standards. The Board’s detailed responsibilities include: a. Selecting, regularly evaluating the performance of, and approving the compensation of the Chief Executive Officer and Section 16 senior executives; b. Planning for succession with respect to the position of Chief Executive Officer and monitoring management's succession planning for Section 16 senior executives; c. Reviewing and, where appropriate, approving the Corporation's major financial objectives, strategic and operating plans and actions; d. Overseeing the conduct of the Corporation's business to evaluate whether the business is being properly managed; and e. Overseeing the processes for maintaining the integrity of the Corporation with regards to its financial statements and other public disclosures, and compliance with law and ethics. The Board has delegated to the Chief Executive Officer, working with the other executive officers of the Corporation (herein referred to collectively as “Management”), the authority and responsibility for managing the business of the Corporation in a manner consistent with the standards and practices of the Corporation, and in accordance with any specific plans, instructions or directions of the Board. The Chief Executive Officer and Management are responsible to seek the advice and, in appropriate situations, the approval of the Board with respect to extraordinary actions to be undertaken by the Corporation.
    [Show full text]