Mission Design for Grades 5-8 and 9-12
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VI FORSKER PÅ MARS Kort Om Aktiviteten I Mange Tiår Har Mars Vært Et Yndet Objekt for Forskere Verden Over
VI FORSKER PÅ MARS Kort om aktiviteten I mange tiår har Mars vært et yndet objekt for forskere verden over. Men hvorfor det? Hva er det med den røde planeten som er så interessant? Her forsøker vi å gi en oversikt over hvorfor vi er så opptatt av Mars. Hva har vi oppdaget, og hva er det vi tenker å gjøre? Det finnes en planet i solsystemet vårt som bare er bebodd av roboter -MARS- Læringsmål Elevene skal kunne - gi eksempler på dagsaktuell forskning og drøfte hvordan ny kunnskap genereres gjennom samarbeid og kritisk tilnærming til eksisterende kunnskap - utforske, forstå og lage teknologiske systemer som består av en sender og en mottaker - gjøre rede for energibevaring og energikvalitet og utforske ulike måter å omdanne, transportere og lagre energi på VI FORSKER PÅ MARS side 1 Innhold Kort om aktiviteten ................................................................................................................................ 1 Læringsmål ................................................................................................................................................ 1 Mars gjennom historien ...................................................................................................................... 3 Romkappløp mot Mars ................................................................................................................... 3 2000-tallet gir rovere i fleng ....................................................................................................... 4 Hva nå? ...................................................................................................................................................... -
A Quantitative Human Spacecraft Design Evaluation Model For
A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. -
The Space Impact of the Euro Crisis 50 Years After Mariner 2: Exploration at a Crossroads
0827_SPN_DOM_00_019_00 (READ ONLY) 8/24/2012 11:39 AM Page 19 www.spacenews.com SPACENEWS 19 August27, 2012 TheSpaceImpact of the Euro Crisis < ROBBIN LAIRD and HARALD MALMGREN > he European sovereign debt crisis Europe will now be challenged in the ing to hide the reality of European bank of the savings of millions of European is not simply abump in historical form of rollbacks of the many inter- weaknesses. The main reason is that eu- citizens. Tprogress; it is the end of aperiod twined strands of integration, fraying rozone economies are far more bank- European leaders are also attempt- of historyand acritical point in Euro- what has been an intricate but incom- dependent than economies like those in ing to initiate amore comprehensive fis- pean and global transition in the 21st plete tapestry. It is questionable whether the United States or United Kingdom, cal union, with new decision-making century. Europe will be able to prevent stalling of where substantial nonbank financing al- mechanisms that transfer sovereignty in The confluence of several trend lines the integration process in the face of ternatives exist for the corporate sector. parallel with the new banking union. We — the unification of Germany,the end widening gaps among the interests of In the eurozone, banks are the fi- do not believe that any of the eurozone of the Soviet Union, the collapse of the each nation and even within each nation. nancial markets; in the U.S., banks are governments are ready for such apoliti- Berlin Wall, the expansion of NATO, Since the birth of the euro, the but one segment of amultifaceted fi- cal transition in which citizens in each the expansion of the European Union French and Germans were in the lead in nancial market. -
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
Generate Viewsheds of Mastcam Images from the Curiosity Rover, Using Arcgis® and Public Datasets
TECHNICAL Coupling Mars Ground and Orbital Views: Generate REPORTS: METHODS Viewsheds of Mastcam Images From the Curiosity 10.1029/2020EA001247 Rover, Using ArcGIS® and Public Datasets Key Points: 1 2 1 3 4 • Mastcam images from the Curiosity M. Nachon , S. Borges , R. C. Ewing , F. Rivera‐Hernández , N. Stein , and rover are available online but lack a J. K. Van Beek5 public method to be placed back in the Mars orbital context 1Department of Geology and Geophysics, Texas A&M University, College Station, TX, USA, 2Department of Astronomy • This procedure allows users to and Planetary Sciences—College of Engineering, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, generate Mastcam image viewsheds: 3 4 locate in a map view the Mars AZ, USA, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA, Division of Geological and Planetary 5 terrains visible in Mastcam images Sciences, California Institute of Technology, Pasadena, CA, USA, Malin Space Science Systems, San Diego, CA, USA • This procedure uses ArcGIS® and publicly available Mars datasets Abstract The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an Supporting Information: exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's • Dataset S1 geologic terrains along Curiosity's path. These ground observations complement the spatially broader • Dataset S2 • Dataset S3 views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be • Table S1 challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images • Table S2 onto orbital images had been made publicly available. -
Ices on Mercury: Chemistry of Volatiles in Permanently Cold Areas of Mercury’S North Polar Region
Icarus 281 (2017) 19–31 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region ∗ M.L. Delitsky a, , D.A. Paige b, M.A. Siegler c, E.R. Harju b,f, D. Schriver b, R.E. Johnson d, P. Travnicek e a California Specialty Engineering, Pasadena, CA b Dept of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA c Planetary Science Institute, Tucson, AZ d Dept of Engineering Physics, University of Virginia, Charlottesville, VA e Space Sciences Laboratory, University of California, Berkeley, CA f Pasadena City College, Pasadena, CA a r t i c l e i n f o a b s t r a c t Article history: Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008– Received 3 January 2016 2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury’s Revised 29 July 2016 north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen Accepted 2 August 2016 organics that can persist over long geologic timescales and evolve under the influence of the Mercury Available online 4 August 2016 space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot Keywords: reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. Mercury surface ices magnetospheres However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles radiolysis and induce ice chemistry. -
MARS SCIENCE LABORATORY ORBIT DETERMINATION Gerhard L. Kruizinga(1)
MARS SCIENCE LABORATORY ORBIT DETERMINATION Gerhard L. Kruizinga(1), Eric D. Gustafson(2), Paul F. Thompson(3), David C. Jefferson(4), Tomas J. Martin-Mur(5), Neil A. Mottinger(6), Frederic J. Pelletier(7), and Mark S. Ryne(8) (1-8)Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, +1-818-354-7060, fGerhard.L.Kruizinga, edg, Paul.F.Thompson, David.C.Jefferson, tmur, Neil.A.Mottinger, Fred.Pelletier, [email protected] Abstract: This paper describes the orbit determination process, results and filter strategies used by the Mars Science Laboratory Navigation Team during cruise from Earth to Mars. The new atmospheric entry guidance system resulted in an orbit determination paradigm shift during final approach when compared to previous Mars lander missions. The evolving orbit determination filter strategies during cruise are presented. Furthermore, results of calibration activities of dynamical models are presented. The atmospheric entry interface trajectory knowledge was significantly better than the original requirements, which enabled the very precise landing in Gale Crater. Keywords: Mars Science Laboratory, Curiosity, Mars, Navigation, Orbit Determination 1. Introduction On August 6, 2012, the Mars Science Laboratory (MSL) and the Curiosity rover successful performed a precision landing in Gale Crater on Mars. A crucial part of the success was orbit determination (OD) during the cruise from Earth to Mars. The OD process involves determining the spacecraft state, predicting the future trajectory and characterizing the uncertainty associated with the predicted trajectory. This paper describes the orbit determination process, results, and unique challenges during the final approach phase. -
Technical History of the Environmental Control System for Project Mercury
https://ntrs.nasa.gov/search.jsp?R=19670029737 2020-03-24T01:19:15+00:00Z NASA TECHNICAL NOTE -NASA L_-TN D-4126 cp. \ LO KI TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY by Frank H, Samonski, Jr. Manned Spacecrafi Center Hozcston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1967 ?" TECH LIBRARY KAFB, "I I llllll lllll1llll lllll Hlll IYH lllll Ill1 Ill 0330793 NASA TN D-4126 TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY By Frank H. Samonski, Jr. Manned Spacecraft Center Houston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 I ABSTRACT This report presents a technical history of the environmental control system for Project Mercury. Significant system changes and flight experience with the environmental control system are described. Attention is also given to the structure of test pro- grams employed to satisfy the mission objectives. ii CONTENTS Section Page SUMMARY .................................... 1 INTRODUCTION ................................. 1 ENVIRONMENTAL CONTROL SYSTEM DESCRIPTION ............ 2 Pressure-Suit Subsystem .......................... 2 Cabin Subsystem ............................... 5 SYSTEM CHANGES ............................... 7 Oxygen-Supply Filler Valve ......................... 7 Pressure- Switch Deletion .......................... 7 Oxygen Flow Sensor ............................ -
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
What Is Gravity Probe B? a Quest for Experimental Truth the GP-B Flight
What is Gravity Probe B? than Gravity Probe B. It’s just a star, a telescope, and a spinning sphere.” However, it took the exceptional collaboration of Stanford, Gravity Probe B (GP-B) is a NASA physics mission to experimentally MSFC, Lockheed Martin and a host of others more than four decades investigate Einstein’s 1916 general theory of relativity—his theory of gravity. to develop the ultra-precise gyroscopes and the other cutting- GP-B uses four spherical gyroscopes and a telescope, housed in a satellite edge technologies necessary to carry out this “simple” experiment. orbiting 642 km (400 mi) above the Earth, to measure, with unprecedented accuracy, two extraordinary effects predicted by the general theory of rela- The GP-B Flight Mission & Data Analysis tivity: 1) the geodetic effect—the amount by which the Earth warps the local spacetime in which it resides; and 2) the frame-dragging effect—the amount On April 20, 2004 at 9:57:24 AM PDT, a crowd of over 2,000 current and by which the rotating Earth drags its local spacetime around with it. GP-B former GP-B team members and supporters watched and cheered as the tests these two effects by precisely measuring the precession (displacement) GP-B spacecraft lifted off from Vandenberg Air Force Base. That emotionally angles of the spin axes of the four gyros over the course of a year and com- overwhelming day, culminating with the extraordinary live video of paring these experimental results with predictions from Einstein’s theory. the spacecraft separating from the second stage booster meant, as GP-B Program Manager Gaylord Green put it, “that 10,000 things went right.” A Quest for Experimental Truth Once in orbit, the spacecraft first underwent a four-month Initialization The idea of testing general relativity with orbiting gyroscopes was sug- and Orbit Checkout (IOC), in which all systems and instruments were gested independently by two physicists, George Pugh and Leonard Schiff, initialized, tested, and optimized for the data collection to follow. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
Long-Range Rovers for Mars Exploration and Sample Return
2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth.