International Journal of Molecular Sciences Review Plant-Derived Smoke Affects Biochemical Mechanism on Plant Growth and Seed Germination Amana Khatoon 1, Shafiq Ur Rehman 2, Muhammad Mudasar Aslam 3, Muhammad Jamil 4 and Setsuko Komatsu 5,* 1 Department of Botanical & Environmental Sciences, Kohat University of Science & Technology, Kohat 26000, Pakistan;
[email protected] 2 Department of Biology, University of Haripur, Haripur 22620, Pakistan; drshafi
[email protected] 3 Department of Botany, University of Science & Technology Bannu, Bannu 28100, Pakistan;
[email protected] 4 Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat 26000, Pakistan;
[email protected] 5 Department of Environmental and Food Sciences, Fukui University of Technology, Fukui 910-8505, Japan * Correspondence:
[email protected]; Tel.: +81-766-29-2466 Received: 2 September 2020; Accepted: 13 October 2020; Published: 20 October 2020 Abstract: The role of plant-derived smoke, which is changed in mineral-nutrient status, in enhancing germination and post-germination was effectively established. The majority of plant species positively respond to plant-derived smoke in the enhancement of seed germination and plant growth. The stimulatory effect of plant-derived smoke on normally growing and stressed plants may help to reduce economic and human resources, which validates its candidature as a biostimulant. Plant-derived smoke potentially facilitates the early harvest and increases crop productivity. Karrikins and cyanohydrin are the active compound in plant-derived smoke. In this review, data from the latest research explaining the effect of plant-derived smoke on morphological, physiological, biochemical, and molecular responses of plants are presented. The pathway for reception and interaction of compounds of plant-derived smoke at the cellular and molecular level of plant is described and discussed.