Plastome Structure and Phylogenetic Relationships of Styracaceae

Total Page:16

File Type:pdf, Size:1020Kb

Plastome Structure and Phylogenetic Relationships of Styracaceae 1 Plastome Structure and Phylogenetic Relationships of Styracaceae 2 (Ericales) 3 4 Xiu-lian Caia, Jacob B. Landisb , Hong-Xin Wang a, Jian-Hua Wang a, Zhi-Xin Zhu a, 5 Hua-Feng Wang a,* 6 7 aHainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School 8 of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China 9 10 bSchool of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey 11 Hortorium, Cornell University, Ithaca, NY 14850, USA 12 13 14 15 16 *Authors for correspondence: 17 Hua-Feng Wang, E-mail: [email protected]; 18 19 20 21 1 22 ABSTRACT 23 Background: The Styracaceae are a woody, dicotyledonous family containing 12 24 genera and an estimated 160 species. Recent studies have shown that Styrax is 25 monophyletic, Alniphyllum and Bruinsmia cluster into a clade with an approximately 26 20-kb inversion in the LSC. Halesia and Pterostyrax are not supported as 27 monophyletic, while Melliodendron and Changiostyrax always from a clade sister to 28 the rest of the family. However, the phylogenetic relationship of Styracaceae at the 29 level of genera remains ambiguous. 30 Results: We collected 28 complete plastomes of Styracaceae, including 12 sequences 31 newly reported here and 16 publicly available complete plastome sequences, 32 comprising 11 of the 12 genera of Styracaceae. All species possessed the typical 33 quadripartite structure of angiosperm plastomes, and the sequence difference is small, 34 except for the large 20-kb (14 genes) inversion region found in Alniphyllum and 35 Bruinsmia. Seven coding sequences (rps4, rpl23, accD, rpoC1, psaA, rpoA and ndhH) 36 were identified to possess positively selected sites. Phylogenetic reconstructions based 37 on seven data sets (i.e., LSC, SSC, IR, Coding, Non-coding, combination of 38 LSC+SSC and concatenation of LSC+SSC+one IR) produced similar topologies and 39 most relationships are consistent with previous findings. In our study, Pterostyrax was 40 strongly supported as monophyletic; Melliodendron and Changiostyrax as 41 successively sister to the rest of the family. 42 Conclusion: Our results clearly indicate that Pterostyrax is monophyletic, and the 43 establishment of Perkinsiodendron and Changiostyrax are supported. A 20-kb reverse 44 sequence was found in the newly published sequence of Alniphyllum fortunei, which 45 confirmed the existence of large inversion sequence in Alniphyllum and Bruinsmia. 46 47 Keywords: Styracaceae; Plastome; Genome structure; Phylogeny; positive selection 48 49 2 50 Background 51 The Styracaceae DC. & spreng (Ericales) comprise an angiosperm clade of 12 52 genera and over 160 species, mainly distributed in regions of Asia, as well as tropical 53 and temperate America, and the Mediterranean [1]. The family consists of shrubs or 54 trees with stellate pubescent or epidermal scales, simple leaves, inflorescence of 55 raceme, cyme or panicle, and actinomorphic flowers with varying degrees of 56 synsepaly and sympetaly [2]. The fruit of Styracaceae is a drupe or capsule, with 57 persistent calyx, surrounding or united with the fruit. The Styracaceae have been 58 included in a number of morphological studies, including leaf anatomy [3], wood 59 anatomy [4], pollen morphology [5] and floral morphology and anatomy [2], but 60 distinguishing between genera in the family primarily involves variation in fruit 61 morphological characters (e.g. hypanthium at maturity). On one hand the ovary is 62 inferior with a persistent hypanthium combined with the fruit at maturity (i.e., 63 Changiostyrax C.T. Chen, Halesia J. Ellis ex L , Melliodendron Hand.-Mazz, 64 Parastyrax Siebold & Zucc., Perkinsiodendron P. W. Fritsch, Pterostyrax W.W. Sm., 65 Rehderodendron Hu, and Sinojackia Hu), while on the other hand the ovary is 66 superior and a persistent hypanthium forms only at the base of the fruit at maturity 67 (Alniphyllum Matsum., Bruinsmia Boerl. & Koord, Styrax L.,)(Fig.1). Moreover, the 68 ovary of Huodendron Rehder is semisuperior with a persistent hypanthium extending 69 from the base to about two-thirds of the fruit length [1, 2], a feature considered to be 70 transitional. 71 The systematic position of Styracaceae has been revised numerous times. Early 72 researchers thought Styracaceae was positioned in the order Ebenales, along with the 73 well-known Sapotaceae, Ebenaceae, and Symplocaceae, and the small family 74 Lissocarpaceae [6, 7, 8, 9]. However, Cronquist [6] showed that there were some 75 original characteristics and some new evolutionary characters in each family of 76 persimmons, which may have arisen via parallel evolution. Based on embryological 77 and anatomical studies, Herbert [10] suggested that the family Styracaceae and 78 Theaceae, which have many common characteristics, may have originated from the 3 79 ancestors of Theaceae. According to molecular systematic studies, Styracaceae has 80 been recognized as part of the order Ericales sensu lato [11]. Within the family, 81 phylogenetic resolution generally remains poor. At most 17 genera have been included 82 in Styracaceae, with Symplocos L, Diclidanthera Mart, Afrostyrax Perk et Gil, 83 Foveolaria Ruiz et pav., Pamphilia Mart. ex A. DC, Huapierre et De Wil, and 84 Lissocarpa Benth having been placed in the Styracaceae by various authors [12]. 85 Symplocos, Diclidanthera and Lissocarpa were excluded from Styracaceae by Perkins 86 [13], after which they were treated as independent families (Symplocos) or combined 87 into Polygalaceae (Diclidanthera) and Ebenaceae (Lissocarpa), Diclidanthera is 88 placed in Polygalaceae [6, 7, 14], and Lissocarpa is the closest relative of Ebenaceae 89 [15]. Afrostyrax was once included in the genus Styrax [16], but was later reclassified 90 into Huaceae [6, 7, 14,17]. According to taxonomic revisions, Pamphilia was 91 classified into Styrax [18]. Fritsch [19] combined Foveolaria into Styrax by 92 implementing morphological phylogenetic analyses. In addition, two new genera have 93 been established in the family Styracaceae: (1) Chen [20] segregated Sinojackia 94 dolichocarpa as a new monotypic genus Changiostyrax, and (2) according to 95 morphological and DNA sequences, Halesia macgregorii was removed from Halesia 96 to become a new genus, Perkinsiodendron P.W. Fritsch [21]. 97 Although the phylogenetic placement of the family has been resolved, there are 98 few phylogenetic studies above the genus level, with the phylogenetic relationships 99 between genera remaining ambiguous. In the phylogeny of Ericales based on the 100 single chloroplast gene rbcL [22], the results showed that Styrax and Clethra 101 Gronov.ex L. (Clethraceae) were clustered in a clade, while Halesia, Rehderodendron, 102 and Sinojackia formed a clade that was sister to Diapensia L. and Galax Rafin. 103 (Diapensiaceae). Therefore, Styracaceae was considered to be polyphyletic. However, 104 this conclusion does not always hold true. Olmstead et al. [23] inferred the phylogeny 105 of Asteridae based on multiple genes, including Styrax and Halesia, which formed a 106 strongly supported sister-group relationship. Albach et al. [24] came to the same 107 conclusion as Olmstead et al. [23] when analyzing molecular evolution of four genes 108 within the Asterids. In addition, the phylogeny of Styracaceae based on morphology 4 109 plus three DNA sequences (chloroplast trnL intron/trnL-trnF spacer and rbcL with the 110 nuclear ribosomal DNA region ITS) recovered a monophyletic relationship of 111 Styracaceae [1]. Early molecular phylogenetic studies of Styracaceae based on 112 morphological characters and three DNA loci showed that Pterostyrax and Halesia 113 were not supported as monophyletic, Styrax and Huodendron formed a clade that was 114 sister to a clade of Alniphyllum and Bruinsmia, and a sister relationship was found 115 between Halesia macgregorii and Rehderodendron macrocarpum [1]. Based on ITS, 116 the plastid psbA-trnH intergenic spacer, and microsatellite data, Yao et al. [25] 117 recovered Sinojackia as monophyletic and reported a similar topology as Fritsch et al. 118 [1] with weak support for six genera within Styracaceae. Yan et al. [26] conducted 119 phylogenetic analyses of the Styracaceae based on 19 chloroplast genomes. The 120 results showed that Styrax was monophyletic, while Huodendron, Alniphyllum and 121 Bruinsmia clustered in a clade with an approximate 20-kb inversion in the Large 122 Single-Copy (LSC) region. The tree species Pterostyrax were not supported as 123 monophyletic, however, Halesia carolina L and Pterostyrax hispidus Siebold & Zucc 124 formed a clade that was sister to the remainder of the family. Additionally, the 125 systematic positions of Halesia and Pterostyrax have not yet been fully resolved. 126 The chloroplast genomes of most angiosperms are of matrilineal inheritance. The 127 rate of evolution of genes in the chloroplast is relatively slow, but the rates of 128 evolution across different regions of the genome have observed differences, which 129 can be applied to phylogenentic studies of various taxonomic scales. Due to a 130 conserved structure, small effective population size, and lack of recombination, 131 chloroplast genomes have been extensively used to infer phylogenetic relationships 132 and histories [27, 28, 29]. With the advent of next-generation sequencing (NGS) 133 technologies, whole-plastome sequencing has become cheaper and faster than ever 134 before. As a result, whole-plastome sequence data have recently been employed to 135 generate highly resolved
Recommended publications
  • Conservation Assessment for the Bigleaf Snowbell (Styrax Grandifolius Ait.)
    Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Steven R. Hill, Ph.D. Division of Biodiversity and Ecological Entomology Biotic Surveys and Monitoring Section 1816 South Oak Street Champaign, Illinois 61820 Prepared for the U.S.D.A. Forest Service, Eastern Region (Region 9), Shawnee and Hoosier National Forests INHS Technical Report 2007 (65) Date of Issue: 17 December 2007 Cover photo: Styrax grandifolius Ait., from the website: In Bloom – A Monthly Record of Plants in Alabama; Landscape Horticulture at Auburn University, Auburn, Alabama. http://www.ag.auburn.edu/hort/landscape/inbloomapril99.html This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. 2 Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Table of Contents
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Halesia Spp. Family: Styracaceae Silverbell
    Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Pages 121-166
    Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • (Ebenaceae) by Evaluating Short Sequence Region of Plastid Rbcl Gene
    POJ 7(2):102-107 (2014) ISSN:1836-3644 Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene Abdullah Alaklabi1, Ibrahim A. Arif 2,3, Sameera O. Bafeel4, Ahmad H. Alfarhan2,3, Anis Ahamed2,3, Jacob Thomas2 and Mohammad A. Bakir2,3* 1Department of Biology, College of Arts and Science, Al-Baha University (BU), Baljurashi, Saudi Arabia 2Department of Botany and Microbiology, College of Science, King Saud University (KSU), Riyadh, Saudi Arabia 3Saudi Biological Society and Prince Sultan Research Chair for Environment and Wildlife, King Saud University 4Department of Biology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia *Corresponding author. Email: [email protected] Abstract Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. Close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D.
    [Show full text]
  • Plant L I V E Grow
    VERMONT TREE SELECTION GUIDE PLANT LIVE GROW Vermont Urban & Community Forestry Program part of the Vermont Department of Forests, Parks & Recreation in partnership with the University of Vermont Extension Table of Contents INTRODUCTION 1 SITE CONDITIONS 3 SPECIAL CONSIDERATIONS 6 TREE SELECTION WORKSHEET 8 KEY TO TREE SPECIES LIST 9 KEY TO SCIENTIFIC NAMES 10 RESOURCES FOR MORE INFORMATION 11 TREE SPECIES LIST 12 The guide was funded in part by the USDA Forest Service, State and Private Forestry. Recognition is given to all the people who offered assistance to this project, especially Pamelia Smith, professor, and Elizabeth Clark, graduate, of Vermont Technical College who helped develop the tree list, to David Schneider, Warren Spinner, and Jeff Young for their review, and to Sensible World for the design. VERMONT TREE SELECTION GUIDE Introduction Are you getting ready to plant a tree or maybe several Consider the following four questions before establishing trees? Whether you are planning to plant on your own trees for long-term growth and health: lawn, in a community park, along a street, or in a tree pit, careful tree selection is essential to the tree’s long- • What is the purpose and use of the term success. We have all heard time and time again to planting? plant ‘the right tree in the right place’. Our latest Tree • What are the site conditions above and Selection Guide for Vermont was developed just for this below ground? purpose - to help you match trees to sites to achieve • What type of maintenance will be lasting shade. required? • What is the best tree species for long- To use this guide, you should first consider four term success? questions that will help you critically evaluate the planting purpose, the site, future needs and desires.
    [Show full text]
  • Florida Installation Guide
    Hedgerow Planting (422) for Pollinators Florida Installation Guide February 2015 The Xerces Society for Invertebrate Conservation Brown-belted bumble bee (Bombus griseocollis) heading to highbush blueberry (Vaccinium corymbosum). (Photograph by www.xerces.org Nancy Lee Adamson, The Xerces Society.) Acknowledgements This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-253. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture. Financial support to the Xerces Society for the development of this guide was provided by the Audrey & J.J. Martindale Foundation, Aveda, Cascadian Farm, Ceres Trust, CS Fund, Disney Worldwide Conservation Fund, The Dudley Foundation, The Elizabeth Ordway Dunn Foundation, Endangered Species Chocolate, General Mills, SeaWorld & Busch Gardens Conservation Fund, Turner Foundation, Inc., The White Pine Fund, Whole Foods Market and its vendors, Whole Systems Foundation, the Natural Resources Conservation Service (NRCS), and Xerces Society members. The authors would like to thank Bob Glennon, Ernst Conservation Seed Company, Gil Nelson, Mark Garland (USDA–NRCS), Drs. Cory Stanley-Stahr, Jamie Ellis, and Jaret Daniels (University of Florida–Gainesville), Straughn Farms, and the USDA–NRCS Brooksville Plant Materials Center. Authors This guide was written in November 2012 by Mace Vaughan, Eric Lee-Mäder, Jessa Kay Cruz, Jolie Goldenetz-Dollar, and Brianna Borders of the Xerces Society for Invertebrate Conservation. Please contact Mace Vaughan ([email protected]) to improve this publication. Revised edition Updated in November 2014 by Dr.
    [Show full text]
  • Native Plants for Piedmont Rock Gardens by Margo Macintyre
    V OLUME 26, I SSUE 2 F EBRUARY 2016 Piedmont Chapter North American Rock Garden Society The Trillium Chapel Hill, Durham, Raleigh, NC Native Plants for Piedmont Rock Gardens by Margo MacIntyre When Marian called to ask me to write an article about native plants for rock gardens for the Tril- lium, a wave of nostalgia hit me. During my college years and later, my Mom enthusiastically reported on the goings-on in the Piedmont Chapter of NARGS. Many times when I was home visiting from my gardening work at the Mt. Cuba Center in Delaware or Hurley Park in Salisbury, I attended Rock Gar- den Society meetings in Chapel Hill. Mom created what I call a rough draft of a rock garden on a bank filled with rocks she brought in and placed. The bank is perhaps two feet high and it tapers into the woods. It was created with rocks from Chatham County and was home to many small bulbs, low and creeping shrubbery, ferns and small perennials. The shady ends contained choice spring wildflowers, some of which remain today, still nes- tled among moss-covered rocks. Since the garden has not been tended in over a decade, it’s safe to say that these gems stand the test of time. Erythronium americanum, troutlily, Claytonia virginica, spring beauty, Silene virginica, firepink and Mitchella repens, partridgeberry, grace the small hillside. The Erythronium and Claytonia seeded into the lawn with reckless abandon. All of these residents of our local woodlands are available from local and mail order native plant sources and they are easy to grow.
    [Show full text]
  • Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
    American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.
    [Show full text]