Halesia Diptera Two-Winged Silverbell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity
Review Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity José Javier Peguero-Pina 1,2,* , Alberto Vilagrosa 3 , David Alonso-Forn 1 , Juan Pedro Ferrio 1,4 , Domingo Sancho-Knapik 1,2 and Eustaquio Gil-Pelegrín 1 1 Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; [email protected] (D.A.-F.); [email protected] (J.P.F.); [email protected] (D.S.-K.); [email protected] (E.G.-P.) 2 Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain 3 Mediterranean Center for Environmental Studies (Fundación CEAM), Joint Research Unit University of Alicante—CEAM, Univ. Alicante, PO Box 99, 03080 Alicante, Spain; [email protected] 4 Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain * Correspondence: [email protected]; Tel.: +34-976-716-974 Received: 5 August 2020; Accepted: 22 September 2020; Published: 23 September 2020 Abstract: Plant functioning and survival in drylands are affected by the combination of high solar radiation, high temperatures, low relative humidity, and the scarcity of available water. Many ecophysiological studies have dealt with the adaptation of plants to cope with these stresses in hot deserts, which are the territories that have better evoked the idea of a dryland. Nevertheless, drylands can also be found in some other areas of the Earth that are under the Mediterranean-type climates, which imposes a strong aridity during summer. In this review, plant species from hot deserts and Mediterranean-type climates serve as examples for describing and analyzing the different responses of trees and shrubs to aridity in drylands, with special emphasis on the structural and functional adaptations of plants to avoid the negative effects of high temperatures under drought conditions. -
Conservation Assessment for the Bigleaf Snowbell (Styrax Grandifolius Ait.)
Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Steven R. Hill, Ph.D. Division of Biodiversity and Ecological Entomology Biotic Surveys and Monitoring Section 1816 South Oak Street Champaign, Illinois 61820 Prepared for the U.S.D.A. Forest Service, Eastern Region (Region 9), Shawnee and Hoosier National Forests INHS Technical Report 2007 (65) Date of Issue: 17 December 2007 Cover photo: Styrax grandifolius Ait., from the website: In Bloom – A Monthly Record of Plants in Alabama; Landscape Horticulture at Auburn University, Auburn, Alabama. http://www.ag.auburn.edu/hort/landscape/inbloomapril99.html This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. 2 Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Table of Contents -
Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province
Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, and North Carolina, NAPPC South Carolina, Tennessee Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Central Appalachian Broadleaf Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 This is one of several guides for Check list 22 different regions in the United States. We welcome your feedback to assist us in making the future Resources and Feedback 23 guides useful. Please contact us at [email protected] Cover: silver spotted skipper courtesy www.dangphoto.net 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, North Carolina, South Carolina, Tennessee a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Central Appalachian Broadleaf Forest – Coniferous Forest – Meadow Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
In Bloom May 21St.Xlsx
In bloom at Van Vleck May 21st … Rhododendrons and azaleas are a big part of this week's show. Especially noteworthy are some unusually colored deciduous azaleas, leaf stem flower root Scientific Name Common Name Where? Fragrant? Trees: also look for foliage, fruit, and bark interest Aesculus pavia red buckeye wetland Asimina triloba pawpaw wetland Chionanthus retusus Chinese fringetree drying yard, rear parking Chionanthus virginicus fringetree winter garden Cornus x hybrida Rutgers hybrid dogwood woodland Halesia diptera two-winged silverbell woodland Halesia monticola mountain silverbell mother's garden Magnolia tripetala umbrella magnolia mother's garden Trochodendron aralioides Japanese wheel tree near caretaker's cottage Shrubs: Calycanthus 'Hartlage Wine' woodland, azalea walk Calycanthus 'Michael Lindsey' Carolina allspice woodland Deutzia gracilis slender deutzia front of house, woodland, pedestrian path Enkianthus campanulatus redvein nkianthus throughout garden Illicium floridanum 'Woodland Ruby' anise tree formal garden Leucothoe throughout garden Lonicera mackii Amur honeysuckle winter garden Rhododendron azalea assorted cultivars throughout garden Rhododendron rhododendron assorted throughout garden Rhododendron carolinianum Carolina rhododendron throughout garden Rhododendron 'Frilly Lemon' deciduous azalea wetland Rhododendron Mollis Hybrids deciduous azalea formal garden Rhododendron vaseyi 'White Find' pinkshell azalea azalea walk Syringa 'Palibin' lilac front of house Vaccinium corymbosum highbush blueberry throughout -
Chinquapin the Newsletter of the Southern Appalachian Botanical Society
chinquapin The Newsletter of the Southern Appalachian Botanical Society Volume 16, No. 4 Winter 2008 Happy Holidays from SABS Red spruce “hunkering down” for winter in the Great Smoky Mountains Photo by Scott Ranger 2 Chinquapin 16 (4) The Newsletter of the Southern Appalachian Botanical Society SABS Officers & Editors Conley K. McMullen, President Department of Biology, MSC 7801 Field Notes by Scott Ranger James Madison University Harrisonburg, VA 22807 3) Do weather conditions control flowering? (540) 568-3805 · fax (540) 568-3333 Three-birds Orchid Update I made a careful comparison of weather [email protected] conditions in 2007 (very hot with 14 days Howard S. Neufeld, Past President With another season of observing this > 90°F and 5 >100°F and dry with ~20% of Department of Biology ephemeral orchid at Pickett’s Mill Battlefield normal rainfall) and 2008 (nearly normal). 572 Rivers Street State Historic Site, I’ve come up with some The same flowering pattern occurred both Appalachian State University observations and questions. The photograph years. It seems weather, at least in these two Boone, NC 28608 below is illustrative for both. If anyone has years, didn’t have an effect on flowering. We (828) 262-2683 · fax (828) 262-2127 any answers, I’d love to hear them. counted a total of 460 stems in 2008, up [email protected] 61.5% from 2007. Weather probably had Charles N. Horn, Treasurer Observations: something to do with this. Biology Department • Even the smallest stems (>2 mm diameter 2100 College Street and >3 cm tall) have at least one well- 4) Is synchronicity overemphasized? I think Newberry College developed flower bud. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Halesia Spp. Family: Styracaceae Silverbell
Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Pages 121-166
Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail -
Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72. -
(American Snowbell). Graduate Theses and Dissertations
Final Recovery Planning Outline with Listing Status Review Triggers for the Illinois Threatened Storax (Styrax americana) Bob Edgin, Illinois Nature Preserves Commission Anne Mankowski, Illinois Endangered Species Protection Board July 2013 Approved by the Illinois Endangered Species Protection Board at the February 20, 2014 Special Meeting. Common Name: Storax Scientific Name: Styrax americana (Lam.) Family: Styracaceae Synonyms: American Snowbell, Downy Snowbell, Mock Orange Status Storax (Styrax americana) is listed as threatened in Illinois (17 Ill. Adm. Code 1050). It was first listed in 1980 as a threatened species due to restricted habitats or low populations in Illinois (Mankowski 2012). The species is not listed as federally endangered or threatened. NatureServe gives the species a global rank of G5 (secure) and it is not ranked at a national scale. It is ranked as S2 (imperiled) in Illinois. Other state rankings include an S1 rank (critically imperiled) for the species in Oklahoma and an S3 rank (vulnerable) Indiana, Virginia, North Carolina, and Kentucky. It is not ranked in the remaining states with its distribution (NatureServe 2013; Figure 1). Total Range Storax ranges across the southeastern United States from Virginia south to Florida and west to Texas, north to Missouri, Illinois, and Indiana (Figure 1). Illinois Distribution In Illinois, the species is historically known from primarily southern and southeastern Illinois, with one northern population in Kankakee County (Herkert and Ebinger 2002). There are historic museum and/or the Illinois Natural Heritage (Biotics 4) Database (Database) element occurrence records (EOs) from 11 counties (EOs have been established from 8 of the 11 counties) and 5 Natural Division Sections (EOs have been established in 3 of the 5 Sections) (Herkert and Ebinger 2002, INHD 2013; Tables 1 and 2, Figure 2).