3. Process Modeling of the Sulfur-Ammonia Cycle

Total Page:16

File Type:pdf, Size:1020Kb

3. Process Modeling of the Sulfur-Ammonia Cycle UC San Diego UC San Diego Electronic Theses and Dissertations Title A Continuous Solar Thermochemical Hydrogen Production Plant Design Permalink https://escholarship.org/uc/item/98v9888g Author Luc, Wesley Wai Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A Continuous Solar Thermochemical Hydrogen Production Plant Design A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemical Engineering by Wesley Wai Luc Committee in charge: Professor Jan Talbot, Chair Professor Richard Herz Professor Pao Chau 2013 Signature Page The Thesis of Wesley Wai Luc is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2013 iii Dedicated to my friends and family iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures .................................................................................................................. viii List of Tables ...................................................................................................................... x Acknowledgements .......................................................................................................... xiv Abstract ............................................................................................................................. xv 1. Introduction ..................................................................................................................... 1 References ....................................................................................................................... 7 2. Background ..................................................................................................................... 9 2.1 Thermochemical Cycles ......................................................................................... 10 2.2 Development of the Sulfur-Ammonia Cycle .......................................................... 14 2.3 Power Recovery System, Rankine Cycle ............................................................... 18 2.4 NaCl Phase-Change Thermal-Storage System ....................................................... 21 2.5 Solar Thermal Energy and Solar Fields .................................................................. 23 References ..................................................................................................................... 26 3. Process Modeling of the Sulfur-Ammonia Cycle ......................................................... 28 3.1 Aspen Plus Process Simulation Software ............................................................... 28 3.2 Aspen Plus Model Chemistry ................................................................................. 31 3.2.1 Thermodynamic Model, ENTRL-SR .............................................................. 31 3.2.2 General Chemistry ........................................................................................... 32 3.2.3 Thermodynamics of Molten Salts .................................................................... 34 3.3 The Oxygen Producing Half-Cycle Aspen Plus Process Flow Sheet ..................... 35 3.3.1 Simulation Blocks ............................................................................................ 36 3.3.2 Material and Energy Streams ........................................................................... 38 3.3.3 Process Flow Sheet Description ...................................................................... 39 3.4 The Hydrogen Producing Half-Cycle Aspen Plus Process Flow Sheet .................. 40 3.4.1 Simulation Blocks ............................................................................................ 41 3.4.2 Material and Energy Streams ........................................................................... 42 3.4.3 Process Flow Sheet Description ...................................................................... 43 3.5 The Rankine Power Recovery Aspen Plus Process Flow Sheet ............................. 44 3.5.1 Simulation Blocks ............................................................................................ 46 3.5.2 Material and Energy Streams ........................................................................... 47 3.5.3 Process Flow Sheet Description ...................................................................... 47 3.6 Tools in Aspen Plus ................................................................................................ 48 3.6.1 Design Specification Blocks ............................................................................ 49 3.6.2 Optimization Blocks ........................................................................................ 57 3.6.3 Calculator Blocks ............................................................................................. 60 3.6.4 Sensitivity Analyses ......................................................................................... 62 References ..................................................................................................................... 65 v 4. Base Case Results ......................................................................................................... 66 4.1 Energy and Mass Balances of a Continuous SA Thermochemical Plant ............... 66 4.2 Thermochemical Reactors, Chemical Absorber, and Electrolyzer ......................... 71 4.3 Separators and Scrubber ......................................................................................... 80 4.4 H2O Feed Pump and H2 Compressor..................................................................... 84 4.5 Heat Integration ...................................................................................................... 86 4.6 The Rankine Power Recovery System .................................................................... 88 4.6.1 Rankine 1 ......................................................................................................... 89 4.6.2 Rankine 2 ......................................................................................................... 92 4.6.3 Power Generation and Power Requirement ..................................................... 95 4.7 Sensitive Analyses, Temperature Profiles .............................................................. 96 4.8 Design Specification Results .................................................................................. 99 4.9 Calculator Block Results, ELECPOWR and PLANTEFF ................................... 104 4.9.1 Electrolyzer Power Requirement ................................................................... 105 4.9.2 Efficiency ....................................................................................................... 105 References ................................................................................................................... 108 5. Case Studies ................................................................................................................ 109 5.1 High Temperature Reactor Study ......................................................................... 109 5.2 Pressure Study Combined with High Temperature Reactor Study ....................... 114 5.3 Salt Concentration Study ...................................................................................... 118 References ................................................................................................................... 122 6. Cost Analysis .............................................................................................................. 123 References ................................................................................................................... 128 7. Conclusions and Future Work .................................................................................... 129 References ................................................................................................................... 133 Appendices ...................................................................................................................... 134 A. Simulation Block Descriptions .............................................................................. 134 A.1 The Gibbs Reactor (RGibbs) Block ................................................................. 134 A.2 The Stoichiometric Reactor (RStoich) Block .................................................. 134 A.3 The Separator (Sep) Block ............................................................................... 135 A.4 The Flash Block ............................................................................................... 135 A.5 The Column Block (RadFrac) .......................................................................... 135
Recommended publications
  • Environmental Protection Agency § 117.3
    Environmental Protection Agency § 117.3 (4) Applicability date. This paragraph TABLE 117.3—REPORTABLE QUANTITIES OF (i) is applicable beginning on February HAZARDOUS SUBSTANCES DESIGNATED PUR- 6, 2020. SUANT TO SECTION 311 OF THE CLEAN (j) Process waste water means any WATER ACT—Continued water which, during manufacturing or Cat- RQ in pounds processing, comes into direct contact Material egory (kilograms) with or results from the production or use of any raw material, intermediate Ammonium benzoate ...................... D ...... 5,000 (2,270) Ammonium bicarbonate .................. D ...... 5,000 (2,270) product, finished product, byproduct, Ammonium bichromate ................... A ....... 10 (4.54) or waste product. Ammonium bifluoride ...................... B ....... 100 (45.4) Ammonium bisulfite ......................... D ...... 5,000 (2,270) [44 FR 50776, Aug. 29, 1979, as amended at 58 Ammonium carbamate .................... D ...... 5,000 (2,270) FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, Ammonium carbonate ..................... D ...... 5,000 (2,270) 2000; 80 FR 37112, June 29, 2015; 83 FR 5208, Ammonium chloride ........................ D ...... 5,000 (2,270) Feb. 6, 2018] Ammonium chromate ...................... A ....... 10 (4.54) Ammonium citrate dibasic ............... D ...... 5,000 (2,270) Ammonium fluoborate ..................... D ...... 5,000 (2,270) § 117.2 Abbreviations. Ammonium fluoride ......................... B ....... 100 (45.4) NPDES equals National Pollutant Ammonium hydroxide ..................... C
    [Show full text]
  • United States Patent Office
    United States Patent Office 3,330,620 Patented July 11, 1967 2 3,330,620 aqueous solution is used and this base is selected from METHOD FOR OXEDZNG AMMONUMSULFTE TO AMMONUMSULFATE the group consisting of pyridine, picolines, lutidines, col Angel Vian-Ortino and Vicente Martin-Municio, Madrid, lidines, quinoline, pyridic coal-tar bases, pyridic bases Spain, assignors to Empresa Auxiliar de la Industria, derived from petro-chemical processes, bases containing S.A., Madrid, Spain 5 pyridinic condensed rings and derivatives thereof. No Drawing. Fied Apr. 22, 1963, Ser. No. 274,806 The method of the present invention of converting am Claims priority, application Spain, Apr. 23, 1962, monium sulfite into ammonium sulfate may also be car 276,718 ried out by forming a dispersion of an organic, nitro 15 Claims. (C. 23-119) gen-containing base in an aqueous solution of ammonium 10 sulfate and ammonium sulfite, the organic base being in The present invention relates to a process for the soluble in the aqueous solution and being present in an quantitative oxidation of ammonium sulfite and, more amount equal to between 10% and 80% of the volume particularly, for the oxidation of ammonium sulfite which of the dispersion, passing air through the dispersion while has been formed by absorption of sulfur dioxide in aque the same is maintained at an elevated temperature of be ous ammonia solutions. Thus, the present invention is also 5 tween 40 and 140 C. and at an absolute pressure of be concerned with the recovery of sulfur dioxide from waste tween 1 and 11 atmospheres so as to substantially com gases in the form of ammonium sulfate.
    [Show full text]
  • The Following List Contains the Material Safety Data Sheets You Requested
    The following list contains the Material Safety Data Sheets you requested. Please scoll down to view the requested MSDS(s). Product MSDS Distributor Format Language Quantity 2882200 2802299 Hach Company OSHA English 1 2882200 2877336 Hach C ompany OSHA English 1 2882200 2105669 Hach Company OSHA English 1 2882200 2107169 Hach Company OSHA English 1 2882200 1406499 Hach Company OSHA English 1 ____________________________________________________________________________________ ______________________ Total Enclosures: 5 World Headquarters Hach Company P.O.Box 389 MSDS No: M01921 Loveland, CO USA 80539 (970) 669 -3050 MATERIAL SAFETY DATA SHEET _________________________________________________________________________ ____ 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Monochlor F TM Reagent Catalog Number: 2802299 Hach Company Emergency Telephone Numbers: P.O.Box 389 (Medical and Transportation) Loveland, CO USA 80539 (303) 623 -5716 24 Hour Service (970) 669 -3050 (515)232 -2533 8am - 4pm CST MSDS Number: M01921 Chemical Name: Not applicable CAS No.: Not applicable Chemical Formula: Not applicable Chemical Family: Not applicable Hazard: Harmful if swallowed Causes burns. Date of MSDS Pre paration: Day: 09 Month: March Year: 2010 _____________________________________________________________________________ 2. COMPOSITION / INFORMATION ON INGREDIENTS Sodium Tartrate CAS No.: 6106 -24 -7 TSCA CAS Number: 868 -18 -8 Percent Range: < 30 Percent Range Units: weight / weight LD50: Oral rabbit LD50 = 5290 mg/kg LC50: None reported TLV: Not established PEL: Not established Hazard: May cause irritation. Sodium Nitroferricyanide CAS No.: 14402 -89 -2 TSCA CAS Number: 14402 -89 -2 Percent Range: < 5.0 Percent Range Units: weight / weight LD50: Oral rat LD 50 = 99 mg/kg (anhydrous). LC50: None reported. TLV: 5 mg/m³ as CN¯ PEL: 5 mg/m³ as CN¯ Hazard: Toxic.
    [Show full text]
  • Effects of Post-Manufacture Board Treatments on Formaldegyde Emission
    Effects of post-manufacture board treatments on formaldehyde emission: a literature review (1960-1984) George E. Myers treatments. At present I suggest that impregnation of Abstract boards with aqueous solutions (Method 1) is likely to be This paper reviews the literature dealing with the the most reliable because it should permit the use of a many post-manufacture board treatments used to re­ large scavenger excess and also allow neutralization of duce formaldehyde emission from urea-formaldehyde board acidity to reduce resin hydrolysis. bonded boards. Such treatments have almost solely used one or more of five chemical or physical principles: 1) formaldehyde reaction with NH3, 2) formaldehyde reaction with oxygenated sulfur compounds, 3) formal­ This is the fifth in a planned series of six critical dehyde reaction with organic -NH functionality, 4) pH reviews of the literature on different aspects of the adjustment, and 5) physical barrier. I have categorized problem of formaldehyde emission from adhesively the available reports according to four primary board bonded wood products. The series was initiated at the treatment methods that use the five principles in differ­ Forest Products Laboratory, Madison, Wis., in response ent ways. The four primary treatment methods are: to a need expressed by industry representatives for an 1. Application of scavengers as solids or aqueous independent evaluation and summation of data from solutions. Ammonium bicarbonate and carbonate have diverse sources. The six aspects being reviewed concern been used as solid powders, while the solutions involved the effects of formaldehyde-to-urea mole ratio (F/U) a variety of ammonium salts, ammonium and alkali (48), ventilation rate and loading (49), temperature and metal salts with sulfur-containing anions, and urea and humidity (51), separate additions to wood furnish or other compounds having -NH functionality; veneer (52), post-manufacture treatments of boards, 2.
    [Show full text]
  • Orca Corrosion Chart
    Unsaturated Polyester Vinylster (Epoxy Acrylate Resins) CHEMICAL Conc Resins NO ISO BIS Novolac Bromine ENVIRONMENT % 511/512 301 585 570 545/555 A 1 Acetaldehyde 20 NR 40 40 40 2 Acetic Acid 10 80 100 100 100 3 Acetic Acid 15 60 100 100 100 4 Acetic Acid 25 60 100 100 100 5 Acetic Acid 50 - 80 80 80 6 Acetic Acid 75 NR 65 65 65 7 Acetic Acid, Glacial 100 NR NR 40 NR 8 Acetic Anhydride 100 NR NR 40 NR 9 Acetone 10 NR NR 80 80 10 Acetone 100 NR NR NR NR 11 Acetonitrile 20 - 40 40 40 12 Acetyl Acetone 20 - 40 50 40 13 Acrolein (Acrylaldehyde) 20 - 40 40 40 14 Acrylamide 50 NR 40 40 40 15 Acrylic Acid 25 NR 40 40 40 16 Acrylic Latex All - 80 80 80 17 Acrylonitrile Latex Dispersion 2 NR 25 25 25 Activated Carbon Beds, Water 18 - 80 100 80 Treatment Adipic Acid(1.5g solution in 19 23 - 80 80 80 water at 25℃, sol in hot water) 20 ALAMINE amines - 65 80 65 21 Alkyl(C8-10) Dimethyl Amine 100 - 80 100 80 22 Alkyl(C8-10) Chloride All - 80 100 95 23 Alkyl Benzene Sulfonic Acid 90 NR 50 50 50 Alkyl Tolyl Trimethyl 24 - - 40 50 40 Ammonium Chloride 25 Allyl Alcohol 100 NR NR 25 NR 26 Allyl Chloride All NR 25 25 25 27 Alpha Methylstyrene 100 NR 25 50 25 28 Alpha Oleum Sulfates 100 NR 50 50 50 29 Alum Sat'd 80 100 120 100 30 Aluminum Chloride Sat'd 80 100 120 100 31 Aluminum Chlorohydrate All - 100 100 100 32 Aluminum Chlorohydroxide 50 - 100 100 100 33 Aluminum Fluoride All - 25 25 25 34 Aluminum Hydroxide 100 80 80 95 80 35 Aluminum Nitrate All 80 100 100 100 36 Aluminum Potassium Sulfate Sat'd 80 100 120 100 37 Aluminum Sulfate Sat'd 80 100 120 100
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • 0090 Chemical Name: Sulfurous Acid, Monoammonium Salt UN 2693 (Bisulfites, Aqueous Date: October 2008 Revision: November 2016 DOT Number: Solution)
    Right to Know Hazardous Substance Fact Sheet Common Name: AMMONIUM BISULFITE CAS Number: 10192-30-0 Synonyms: Ammonium Hydrogen Sulfite; Ammonium Sulfite RTK Substance Number: 0090 Chemical Name: Sulfurous Acid, Monoammonium Salt UN 2693 (Bisulfites, aqueous Date: October 2008 Revision: November 2016 DOT Number: solution) Description and Use EMERGENCY RESPONDERS >>>> SEE PAGE 6 Ammonium Bisulfite is a colorless to yellow crystalline (sand- Hazard Summary like) solid that is commonly used in a water solution. It is used Hazard Rating NJDHSS NFPA in fertilizer, water treatment, as a bleaching agent for paper HEALTH 3 - pulp, cotton and wool, and as a hairwaving agent. FLAMMABILITY 0 - REACTIVITY 0 - CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Ammonium Bisulfite is on the Right to Know Hazardous 4=severe Substance List because it is cited by DOT and EPA. This chemical is on the Special Health Hazard Substance List. Ammonium Bisulfite can affect you when inhaled. Contact can severely irritate and burn the skin and eyes with possible eye damage. Inhaling Ammonium Bisulfite can irritate the nose and throat. Inhaling Ammonium Bisulfite can irritate the lungs. Higher SEE GLOSSARY ON PAGE 5. exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. FIRST AID Ammonium Bisulfite may cause a skin allergy and an Eye Contact asthma like allergy. Immediately flush with large amounts of water for at least 30 Ammonium Bisulfite is a DOT CORROSIVE material. minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production Agni E
    361 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 45, 2015 of Chemical Engineering www.aidic.it/cet Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi, Jun Yow Yong, Xia Liu Copyright © 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-36-5; ISSN 2283-9216 DOI: 10.3303/CET1545061 Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production Agni E. Kalyvaa, Ekaterini Ch. Vagiaa, Athanasios G. Konstandopoulosb, Arun R. Srinivasac, Ali T-Raissid, Nazim Muradovd, Konstantinos E. Kakosimos*,a aTexas A&M University at Qatar, Chemical Engineering Department, Sustainable Energy Research Laboratory (SERL), PO Box 23874, Doha, Qatar bChemical Process Engineering Research Institute, Aerosol and Particle Technology Laboratory (APTL), Center for Research and Technology-Hellas (CERTH/CPERI), P.O. Box 361, 57001 Thermi-Thessaloniki, Greece cTexas A&M University, Department of Mechanical Engineering, College Station, TX 77843-3123, USA dFlorida Solar Energy Center, University of Central Florida, Cocoa, FL 32922, USA [email protected] Hydrogen is currently being used in many industries, from chemical and refining to metallurgical, glass and electronics, while being at the same time a promising energy carrier. Therefore the need for hydrogen is experiencing a very rapid growth. At the same time, the traditional hydrogen production methods (e.g., steam methane reforming, water electrolysis) are energy and resources intensive. Thus, research focus is on sustainable technologies that can produce hydrogen in an economic and environmental friendly way. Hydrogen production via a solar driven hybrid sulfur-ammonia water splitting cycle (HySA) developed at Florida Solar Energy Center is such a promising technology.
    [Show full text]
  • Exhibit 2D-3
    Exhibit 2D–3. Hazardous Substances 1. Acetaldehyde 73. Captan 144. Ferrous sulfate 2. Acetic acid 74. Carbaryl 145. Formaldehyde 3. Acetic anhydride 75. Carbofuran 146. Formic acid 4. Acetone cyanohydrin 76. Carbon disulfide 147. Fumaric acid 5. Acetyl bromide 77. Carbon tetrachloride 148. Furfural 6. Acetyl chloride 78. Chlordane 149. Guthion 7. Acrolein 79. Chlorine 150. Heptachlor 8. Acrylonitrile 80. Chlorobenzene 151. Hexachlorocyclopentadiene 9. Adipic acid 81. Chloroform 152. Hydrochloric acid 10. Aldrin 82. Chloropyrifos 153. Hydrofluoric acid 11. Allyl alcohol 83. Chlorosulfonic acid 154. Hydrogen cyanide 12. Allyl chloride 84. Chromic acetate 155. Hydrogen sulfide 13. Aluminum sulfate 85. Chromic acid 156. Isoprene 14. Ammonia 86. Chromic sulfate 157. Isopropanolamine dodecylbenzenesulfonate 15. Ammonium acetate 87. Chromous chloride 158. Kelthane 16. Ammonium benzoate 88. Cobaltous bromide 159. Kepone 17. Ammonium bicarbonate 89. Cobaltous formate 160. Lead acetate 18. Ammonium bichromate 90. Cobaltous sulfamate 161. Lead arsenate 19. Ammonium bifluoride 91. Coumaphos 162. Lead chloride 20. Ammonium bisulfite 92. Cresol 163. Lead fluoborate 21. Ammonium carbamate 93. Crotonaldehyde 164. Lead fluorite 22. Ammonium carbonate 94. Cupric acetate 165. Lead iodide 23. Ammonium chloride 95. Cupric acetoarsenite 166. Lead nitrate 24. Ammonium chromate 96. Cupric chloride 167. Lead stearate 25. Ammonium citrate 97. Cupric nitrate 168. Lead sulfate 26. Ammonium fluoroborate 98. Cupric oxalate 169. Lead sulfide 27. Ammonium fluoride 99. Cupric sulfate 170. Lead thiocyanate 28. Ammonium hydroxide 100. Cupric sulfate ammoniated 171. Lindane 29. Ammonium oxalate 101. Cupric tartrate 172. Lithium chromate 30. Ammonium silicofluoride 102. Cyanogen chloride 173. Malathion 31. Ammonium sulfamate 103. Cyclohexane 174. Maleic acid 32. Ammonium sulfide 104.
    [Show full text]
  • 1. Ammonium Sulfite; (NH4)2S03; Yasuda, M
    Ammonium Sulfite 117 COMPONENTS: ORIGINAL MEASUREMENTS: 1. Ammonium sulfite; (NH4)2S03; Yasuda, M. [10196-18-5] Bull. Inst. Phys. Chem. Research (Tokyo) 2. Water; H20; [7732-18-5] 1924, 3, 43-50. VARIABLES: PREPARED BY: Temperature: 285 - 333 K Mary R. Masson EXPERIMENTAL VALUES: Composition of equIlibrium solutions a S02 NH 3 (NH4)2S03 Solld t/°C mol dm-3 ~tlol dm-3 g dm-3 phase 12 3.463 6.899 403.2 B 15 3.675 7.450 426.5 B 20 3.874 7.728 451.5 B 25 4.060 8.092 470.96 A 30 4.189 8.406 485.9 A 40 4.328 8.859 502.4 A 50 4.919 9.641 570.6 A 60 54.64 10.81 633.7 A a Solid phases: A- 2(NH4)2S03.3H20, B - (NH4)2S03.H20 AUXILIARY INFORHATlON METHOD APPARATUS/PROCEDURE: SOllRC~. AND PURl TV OF ~L\n RI ALS: Equilibrium solutions were analysed by Not stated. "standard methods" (1). bSTlMATED ERROR: No estimates possible. lU.n.RENC~.S: 1. Treadwell, Analytical ChemIstry, 5th Ed., Vol. II, 560, 692. 118 Ammonium Sulfite COMPONENTS: ORIGINAL MEASUREMENTS: 1. AmmonIum sulfIte; (NH4)2S03; IshIkawa, F.; Murooka, T. [10196-04-0] Bull. Inst. Phys. Chern. Research (Tokyo) 2. Water; H20; [7732-18-5] 1928, 7, 1160-76. (In Japanese); SCI. Repts. Tohoku Imp. UnIversIty 1933, 22, 201-219. (In English). VARIABLES: PREPARED BY: Temperature: 260 - 373 K Mary R. Masson EXPERIMENTAL VALUES: a TIme (NH4)2S03 (NH4)2S03 (NH4 )2S03 (NH4 )2S03 t/oC hr mass % mean mass % g/100 m1 soln.
    [Show full text]
  • Kinetics and Reaction Mechanism of Catalytic Oxidation of Ammonium Sulfite
    Asian Journal of Chemistry; Vol. 26, No. 1 (2014), 69-74 http://dx.doi.org/10.14233/ajchem.2014.15320 Kinetics and Reaction Mechanism of Catalytic Oxidation of Ammonium Sulfite 1 2 3 1 1 1,* SHAOPENG GUO , JIAHUA WANG , XIN CHEN , JIA ZHANG , RUI ZHANG and JUN LU 1Key Laboratory of Coal Gasification, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China 2MWH Environmental Engineering (Shanghai) Co., Ltd., Shanghai 201103, P.R. China 3SINOPEC Ningbo Engineering Co., Ltd., Ningbo 315103, P.R. China *Corresponding author: E-mail: [email protected] Received: 13 February 2013; Accepted: 24 May 2013; Published online: 26 December 2013; AJC-14476 The effects of five catalysts on the oxidation rate of ammonium sulfite were compared by intrinsic experiments using self-designed bath reactor. Fe2+ was turned out to be a good catalyst for oxidation of ammonium sulfite. Using stirred bubbling reactor, the kinetics of catalytic oxidation of sulfite in the ammonium-based wet flue gas desulfurization process were investigated by varying concentrations of 2+ (NH4)2SO4, (NH4)2SO3 and Fe , pH, air flow rate and temperature. The reaction was found to be first order with respect to ammonium sulfite, 0.4 order with respect to Fe2+ and the oxidation could reach the maximum rate when pH value was close to 6. The mechanism of the oxidation was discussed and concluded that the oxidation is controlled by diffusion of oxygen. Keywords: Kinetics, Mechanism, Catalyst, Ammonium sulfite, Ammonia-based flue gas desulphurization. INTRODUCTION to oxygen. Long et al.6 studied a homogeneous catalyst system for the oxidation of concentrated ammonium sulfite.
    [Show full text]