International Journal of Molecular Sciences Article Mapping Astrocyte Transcriptional Signatures in Response to Neuroactive Compounds Debosmita Sardar 1, Brittney Lozzi 2, Junsung Woo 1, Teng-Wei Huang 1, Caroline Cvetkovic 3, Chad J. Creighton 4,5, Robert Krencik 3 and Benjamin Deneen 1,6,7,* 1 Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA;
[email protected] (D.S.);
[email protected] (J.W.);
[email protected] (T.-W.H.) 2 Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA;
[email protected] 3 Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA;
[email protected] (C.C.);
[email protected] (R.K.) 4 Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
[email protected] 5 Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA 6 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA 7 Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence:
[email protected] Abstract: Astrocytes play central roles in normal brain function and are critical components of synaptic networks that oversee behavioral outputs. Despite their close affiliation with neurons, how neuronal-derived signals influence astrocyte function at the gene expression level remains poorly characterized, largely due to difficulties associated with dissecting neuron- versus astrocyte- Citation: Sardar, D.; Lozzi, B.; Woo, specific effects. Here, we use an in vitro system of stem cell-derived astrocytes to identify gene J.; Huang, T.-W.; Cvetkovic, C.; expression profiles in astrocytes that are influenced by neurons and regulate astrocyte development.