P-Cymene and Organic Peroxides As Indicators of Oxidation in Tea Tree Oil

Total Page:16

File Type:pdf, Size:1020Kb

P-Cymene and Organic Peroxides As Indicators of Oxidation in Tea Tree Oil p-Cymene and organic peroxides as indicators of oxidation in tea tree oil. A report for the Rural Industries Research and Development Corporation by Ian Southwell September 2006 RIRDC Publication No 06/112 RIRDC Project No ISO-2A i © 2006 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 375 8 ISSN 1440-6845 p-Cymene and organic peroxides, indicators of oxidation in tea tree oil. Publication No. 06/112 Project No ISO 2A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable industries. The information should not be relied upon for the purpose of a particular matter. Specialist and/or appropriate legal advice should be obtained before any action or decision is taken on the basis of any material in this document. The Commonwealth of Australia, Rural Industries Research and Development Corporation, the authors or contributors do not assume liability of any kind whatsoever resulting from any person's use or reliance upon the content of this document. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Dr Ian Southwell Phytoquest 22 Canterbury Chase Goonellabah, NSW, 2480 Australia Phone: 0266 242 453 Fax: 0266 283 264 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 2, Pharmacy Guild House 15 National Circuit BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4819 Fax: 02 6272 5877 Email: [email protected]. Web : http://www.rirdc.gov.au Published in September 2006 Printed on environmentally friendly paper by Canprint ii Foreword The European Scientific Committee on Consumer Products (SCCP) recently concluded that insufficient data are available on the safety and stability of tea tree oil. The industry is addressing this situation with RIRDC by commissioning approved tests to obtain a more complete safety dossier on tea tree oil. The oil tested must be well defined chemically for the dossier to be valid. This investigation outlines how, from eleven commercial samples screened, three oils (one fresh, one oxidised and one, blended from commercial oils, mildly oxidised) were chosen by p-cymene content and peroxide index determination. These samples were then thoroughly defined by Gas Chromatography (GC), Gas Chromatography-Mass Spectrometry (GCMS) and physical constants to determine status with respect to the International Standards Organisation (ISO) standard for tea tree oil before being recommended for dermal penetration and other safety parameter investigations for the dossier. As a result of this investigation, it is suggested that oxidised tea tree oils are always seen to be associated with high p-cymene contents and sometimes high peroxide values. With the difficulty in measuring and identifying the degradation products due to their instability and poor documentation, p-cymene concentration seems a better determinant for oxidation than any other method. Sufficient well accepted Standards exist for this to be an easy analysis. Such testing will be of economic benefit as a more acceptable oil will lead to more sales and be of social benefit as the safety and stability of the oil are better defined. This project was funded from RIRDC core funds which are provided by the Australian Government and from matching voluntary contributions from the Australian Tea Tree Industry Association (ATTIA). This report is an addition to RIRDC’s diverse range of over 1500 research publications. It forms part of our Tea Tree Oil R&D sub-program which aims to develop safety packages to support registration and product formulation. Most of our publications are available for viewing, downloading or purchasing online through our website: • downloads at www.rirdc.gov.au/fullreports/index.html • purchases at www.rirdc.gov.au/eshop Peter O’Brien Managing Director Rural Industries Research and Development Corporation iii Acknowledgements As this investigation uses the previous RIRDC Publication No. 06/026 of Project No. Dan 241A (Southwell et al., 2006) as a basis for revision, the contributions of co-authors Robert Lowe (NSW Dept of Primary Industries, Wollongbar Agricultural Institute, 1243 Bruxner Highway, Wollongbar, NSW, 2477) and David Leach and Aaron Pollack (Centre for Phytochemistry & Pharmacology, Southern Cross University, Military Road, Lismore, NSW 2480) are gratefully acknowledged. Abbreviations ATTIA Australian Tea Tree Industries Association BP British Pharmacopoeia CPP Centre for Phytochemistry and Pharmacology of SCU FID Flame Ionization Detector GC Gas Chromatography GCFID Gas Chromatography – Flame Ionization Detection GCMS Gas Chromatography – Mass Spectrometry ISO International Standards Organisation NSW DPI New South Wales Department of Primary Industries Ph Eur European Pharmacopoeia PV Peroxide Value ( = Peroxide Index) SCCP Scientific Committee on Consumer Products SCU Southern Cross University TAS Technical and Safety committee of ATTIA WAI Wollongbar Agricultural Institute of NSW DPI iv Contents Foreword............................................................................................................................................... iii Acknowledgements................................................................................................................................iv Abbreviations ........................................................................................................................................iv Executive Summary ..............................................................................................................................vi 1. Introduction....................................................................................................................................1 2. Objectives........................................................................................................................................2 3. Methodology ...................................................................................................................................3 4. Results .............................................................................................................................................4 5. Discussion........................................................................................................................................5 6. Conclusions, Implications and Recommendations....................................................................13 7. References.....................................................................................................................................14 Annex 1 .................................................................................................................................................15 Annex 2 .................................................................................................................................................16 Annex 3 .................................................................................................................................................17 Annex 4 .................................................................................................................................................18 Annex 5 .................................................................................................................................................30 v Executive Summary Background Headlines in Europe recently stated: “tea tree oil – unsafe and unstable”. This undesirable media coverage overseas came as a challenge to the Australian tea tree oil industry at a time when attempts to combat low prices by better market promotion of the oil were gaining momentum. The headlines followed the release of a European SCCP (Scientific Committee on Consumer Products) opinion that concluded that insufficient data were available on the safety and stability of the oil. Consumers and the media need to know the facts about the safety and stability of tea tree oil that, along with proven efficacy, have made the oil such a popular health care product over the last 70 years. The industry and RIRDC are addressing this situation by commissioning approved tests in order to obtain a more complete safety dossier on tea tree oil. Aims For this to be achieved, the oils tested must be well defined chemically for the dossier to be valid. Methods This investigation outlines how, from eleven commercial samples screened, three oils (one fresh, one oxidised and one, blended from commercial oils, mildly oxidised) were chosen by p-cymene content and peroxide index determination. These samples were then thoroughly defined by GC, GCMS and physical constants to determine status with respect to the ISO standard for tea tree oil before being recommended for dermal penetration and other safety parameter investigations for the dossier. The methods used were internationally accepted procedures for determining p-cymene content and peroxide value (British or European Pharmacopoeia methods), GC profiles and physical constants (ISO Standard) and GCMS (generally accepted literature procedures). From 11 tea tree oils screened,
Recommended publications
  • Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
    Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and
    [Show full text]
  • Potassium Iodide (KI): Instructions for Children
    Potassium Iodide (KI): Instructions for Children The thyroid gland in children is very sensitive to the effects of radioactive iodine. In the event of a nuclear emergency, it is important for adults to understand how to prepare the proper dosage of potassium iodide (KI) for young children. The following information will help you to give KI to your children properly. Children over 12 years to 18 years 2 tablets (whole or crushed) (130 mg) (who weigh at least 150 pounds) Children over 12 years to 18 years 1 tablet (whole or crushed) or 8 teaspoons (65 mg) (who weigh less than 150 pounds) Children over 3 years to 12 years 1 tablet (whole or crushed) or 8 teaspoons (65 mg) Children over 1 month to 3 years 4 teaspoons (32.5 mg) Babies at birth to 1 month 2 teaspoons (16.25 mg) Tablets can be crushed and mixed in many liquids. To take the tablet in liquid solution, use dosing directions under “Making a Potassium Iodide Liquid Mixture.” Take KI only as directed by public officials. Do not take more than 1 dose in 24 hours. More will not help you. Too much medicine may increase the chances of side effects. Making a Potassium Iodide Liquid Mixture 1. Put one 65 mg KI tablet into a small bowl and grind it into a fine powder using the back of a metal teaspoon against the inside of the bowl. The powder should not have any large pieces. 2. Add 4 teaspoons of water to the crushed KI powder in the bowl and mix until the KI powder is dissolved in the water.
    [Show full text]
  • Determination of Iodate in Iodised Salt by Redox Titration
    College of Science Determination of Iodate in Iodised Salt by Redox Titration Safety • 0.6 M potassium iodide solution (10 g solid KI made up to 100 mL with distilled water) • 0.5% starch indicator solution Lab coats, safety glasses and enclosed footwear must (see below for preparation) be worn at all times in the laboratory. • 250 mL volumetric flask Introduction • 50 mL pipette (or 20 and 10 mL pipettes) • 250 mL conical flasks New Zealand soil is low in iodine and hence New Zealand food is low in iodine. Until iodised salt was • 10 mL measuring cylinder commonly used (starting in 1924), a large proportion • burette and stand of school children were reported as being affected • distilled water by iodine deficiency – as high as 60% in Canterbury schools, and averaging 20 − 40% overall. In the worst cases this deficiency can lead to disorders such as Method goitre, and impaired physical and mental development. 1. Preparation of 0.002 mol L−1 sodium thiosulfate In earlier times salt was “iodised” by the addition of solution: Accurately weigh about 2.5 g of solid potassium iodide; however, nowadays iodine is more sodium thiosulfate (NaS2O3•5H2O) and dissolve in commonly added in the form of potassium iodate 100 mL of distilled water in a volumetric flask. (This gives a 0.1 mol L−1 solution). Then use a pipette to (KIO3). The Australia New Zealand Food Standards Code specifies that iodised salt must contain: “equivalent to transfer 10 mL of this solution to a 500 mL volumetric no less than 25 mg/kg of iodine; and no more than 65 flask and dilute by adding distilled water up to the mg/kg of iodine”.
    [Show full text]
  • Review Article a Review on Anti-Oxidative Herbs PL
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES ISSN: 22775005 Review Article A Review on Anti-oxidative Herbs PL. Rajagopal1*, VB. Narayana Swamy2, SS. Kiron3 and KR. Sreejith4 1Department of Pharmacognosy, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. 2Professor and Principal, Department of Pharmacognosy, Karaveli College of Pharmacy, Mangalore, Karnataka, South India. 3Department of Pharmacy Practice, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. 4Department of Pharmaceutical Chemistry, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. ABSTRACT Plants are valuable source of the therapeutic agents in the armory of modern medicine. The method of drug development from plant sources is based on a sequence of operation leading mainly toward the isolation of pure natural products. An antioxidant is a molecule that inhibits the oxidation of other molecules. Antioxidants have been investigated for the prevention of diseases such as cancer, coronary heart disease and even altitude sickness. The major sources of anti-oxidants are reported to be from the natural source, especially from plant source. Key words: Anti oxidant, Free radical, Medicinal Plants INTRODUCTION pharmacological studies to ascertain their Till date as such no set definition of the term therapeutic properties. (Bakru H.K. 1992). antioxidant exists. Scientists are still striving In this review an attempt has been made o hard to find out the role of particular dietary compile most of the Natural Herbs which supplements in body that have potent health possess ant oxidative property. Following are benefits. Since, different antioxidant the list of such medicinal herbs which are compounds found in diet considerably vary reported to be an antioxidant.
    [Show full text]
  • Potassium Iodide (KI) Preparation and Dosing Instructions for Use During a Nuclear Emergency to Make KI Solution (Liquid Form), Using Two 65 Mg KI Tablets
    Potassium Iodide (KI) Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using two 65 mg KI Tablets If government authorities declare that a radiation emergency has occurred, you may have been exposed to radioactive iodine. Potassium iodide can prevent thyroid cancer in people who have been exposed to radioactive iodine. Potassium iodide is also known as KI. Children who have been exposed to radioactive iodine have a greater risk of thyroid cancer than adults do. You may need to make a KI solution (liquid form) for anyone who cannot swallow tablets. This sheet explains how to make and give the KI solution. FDA-approved KI tablets come in 65 mg and 130 mg strengths. Instructions for preparing the KI solution using two 65 mg tablets are given below. To Make the Potassium Iodide (KI) Solution You Will Need: Two 65 mg KI tablets Teaspoon Small bowl Four teaspoons of water Four teaspoons of a drink. We recommend any one of the following: ■ White milk ■ Chocolate milk ■ Orange juice ■ Soda (For example, cola) ■ Infant formula ■ Raspberry syrup ■ Water Directions for Making the Potassium Iodide (KI) Solution: Step 1. Soften the KI tablets: Put two 65 mg KI tablets into a small bowl. Add four teaspoons of water. Soak the tablets for one minute. Step 2. Crush the softened KI tablets: Use the back of the teaspoon to crush the tablets in the water. At the end of this step, there should not be any large pieces of KI. This makes the KI and water mixture.
    [Show full text]
  • Calcium Chloride
    Iodine Livestock 1 2 Identification of Petitioned Substance 3 4 Chemical Names: 7553-56-2 (Iodine) 5 Iodine 11096-42-7 (Nonylphenoxypolyethoxyethanol– 6 iodine complex) 7 Other Name: 8 Iodophor Other Codes: 9 231-442-4 (EINECS, Iodine) 10 Trade Names: CAS Numbers: 11 FS-102 Sanitizer & Udderwash 12 Udder-San Sanitizer and Udderwash 13 14 Summary of Petitioned Use 15 The National Organic Program (NOP) final rule currently allows the use of iodine in organic livestock 16 production under 7 CFR §205.603(a)(14) as a disinfectant, sanitizer and medical treatment, as well as 7 CFR 17 §205.603(b)(3) for use as a topical treatment (i.e., teat cleanser for milk producing animals). In this report, 18 updated and targeted technical information is compiled to augment the 1994 Technical Advisory Panel 19 (TAP) Report on iodine in support of the National Organic Standard’s Board’s sunset review of iodine teat 20 dips in organic livestock production. 21 Characterization of Petitioned Substance 22 23 Composition of the Substance: 24 A variety of substances containing iodine are used for antisepsis and disinfection. The observed activity of 25 these commercial disinfectants is based on the antimicrobial properties of molecular iodine (I2), which 26 consists of two covalently bonded atoms of elemental iodine (I). For industrial uses, I2 is commonly mixed 27 with surface-active agents (surfactants) to enhance the water solubility of I2 and also to sequester the 28 available I2 for extended release in disinfectant products. Generally referred to as iodophors, these 29 “complexes” consist of up to 20% I2 by weight in loose combination with nonionic surfactants such as 30 nonylphenol polyethylene glycol ether (Lauterbach & Uber, 2011).
    [Show full text]
  • Leaf and Flower Volatile Oil Components of Two Thyme Taxa Origanum Onites L
    Avrupa Bilim ve Teknoloji Dergisi European Journal of Science and Technology Sayı 17, S. 346-350, Aralık 2019 No. 17, pp. 346-350, December 2019 © Telif hakkı EJOSAT’a aittir Copyright © 2019 EJOSAT Araştırma Makalesi www.ejosat.com ISSN:2148-2683 Research Article Leaf and Flower Volatile Oil Components of Two Thyme Taxa Origanum onites L. and Thymbra spicata var. spicata L. in Turkey Ayşe Gül Sarıkaya1* 1 Bursa Technical University, Faculty of Forestry, Bursa-Turkey (ORCID: 0000-0002-0641-4445) (İlk Geliş Tarihi 10 Eylül 2019 ve Kabul Tarihi 14 Ekim 2019) (DOI: 10.31590/ejosat.618187) ATIF/REFERENCE: Sarıkaya, A. (2019). Leaf and Flower Volatile Oil Components of Two Thyme Taxa Origanum onites L. and Thymbra spicata var. spicata L. in Turkey. Avrupa Bilim ve Teknoloji Dergisi, (17), 346-350. Abstract Medicinal and aromatic plants have a special importance with volatile oil components. Lamiaceae family members are important in pharmacology and perfumery industry because they contain volatile and aromatic oil. Origanum onites L. and Thymbra spicata var. spicata L. are the most widely used and most exported species. The volatile components of the leaves and flowers of Origanum onites L. and Thymbra spicata var. spicata taxa were determined by Headspace Solid Phase Microextraction (HS-SPME) technique combined with gas chromatography/mass spectrometry (GC / MS). 33 different components of Origanum onites were identified and the main components were p-cymene (11.45%), γ-terpinene (11.89%), linalool (14.35%), thymol (20.03%) and carvacrol (26.91%), respectively. For Thymbra spicata var. spicata L., 36 different compounds were identified and the main components were p-cymene (11.72%), γ-terpinene (10.96%), linalool (13.44%), thymol (18.92%) and carvacrol (27.34%), respectively.
    [Show full text]
  • Camphene, A3-Carene, Limonene, and Ot=Terpinene
    Environ. Sci. Technol. 1999, 33,4029-4033 The hydrocarbon emissions are typically divided into two Thermal Degradation of Terpenes: categories: (a) the condensed hydrocarbons of higher molecular weight that are responsible in part for the blue- Camphene, A3-Carene, Limonene, haze plume characteristic of dryer emissions and (b) the and ot=Terpinene lower molecular weight hydrocarbons (C+&), generally referred to as volatile hydrocarbons. Both nongaseous (condensed) and gaseous (volatile) hydrocarbons emitted GERALD W. MCGRAW,*,+ by wood dryers have been analyzed by a number of workers RICHARD W. HEMINGWAY,* LEONARD L. INGRAM, JR.,s (2-s). In general, the nongaseous fraction consists of a CATHERINE S. CANADY,’ AND mixture of resin acids and fatty acids and their esters as well WILLIAM B. MCGRAW+ as some sesquiterpenoid compounds and undefined oxida- tion products. The gaseous fraction is primarily made up of of Chemistry, Louisiana College, monoterpenes present in the wood and some of their Pineuille, Louisiana 71359, Southern Research Station, USDA Forest Service, 2500 Shreveport Highway, oxidation products. Comparatively little is known about the Pineuille, Louisiana 71360, and Forest Products Lab, yields, structures, and biological properties of oxidation Department of Forest Products, Mississippi State University, products of monoterpenes. Mississippi State, Mississippi 39762-9820 Cronn et al. (3) studied the gaseous emissions from a number of veneer dryers at mills in the northwest and southern U.S. From a plywood veneer dryer in the southern U.S. using a mixture of loblolly and shortleaf pines, it was Emissions from wood dryers have been of some concern found that terpenes accounted for 98.9% of the total gaseous for a number of years, and recent policy changes by the hydrocarbon emissions.
    [Show full text]
  • A Genomic Approach to Characterization of the Citrus Terpene Synthase Gene Family
    Genetics and Molecular Biology, 30, 3 (suppl), 832-840 (2007) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article A genomic approach to characterization of the Citrus terpene synthase gene family Marcelo Carnier Dornelas and Paulo Mazzafera Departamento de Fisiologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil. Abstract Terpenes are a very large and structurally diverse group of secondary metabolites which are abundant in many es- sential oils, resins and floral scents. Additionally, some terpenes have roles as phytoalexins in plant-pathogen rela- tionships, allelopathic inhibitors in plant-plant interactions, or as airborne molecules of plant-herbivore multitrophic signaling. Thus the elucidation of the biochemistry and molecular genetics of terpenoid biosynthesis has paramount importance in any crop species. With this aim, we searched the CitEST database for clusters of expressed sequence tags (ESTs) coding for terpene synthases. Herein is a report on the identification and in silico characterization of 49 putative members of the terpene synthase family in diverse Citrus species. The expression patterns and the possible physiological roles of the identified sequences are also discussed. Key words: secondary metabolism, flavor, aroma, plant protection, terpene synthesis. Received: July 21, 2006; Accepted: April 2, 2007. Introduction respectively. Polyterpenes are all terpenes containing more Terpenes are found widely distributed in the plant than eight isoprene units, which include all natural rubbers kingdom, from lichens and algae to higher plants. Although (Goodwin, 1967; Croteau et al., 2000). terpenes cover a wide range of compounds with diverse Elucidation of the biochemistry and molecular genet- structure, the word terpene has been frequently associated ics of terpenoid biosynthesis has made rapid progress in re- with essential oils, which are volatile compounds belong- cent years (Rohdich et al., 2005).
    [Show full text]
  • World Health Organization Model List of Essential Medicines, 21St List, 2019
    World Health Organizatio n Model List of Essential Medicines 21st List 2019 World Health Organizatio n Model List of Essential Medicines 21st List 2019 WHO/MVP/EMP/IAU/2019.06 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. World Health Organization Model List of Essential Medicines, 21st List, 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.
    [Show full text]
  • Monoterpenes in the Glandular Trichomes of Tomato Are Synthesized
    Monoterpenes in the glandular trichomes of tomato SEE COMMENTARY are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate Anthony L. Schilmillera,1, Ines Schauvinholdb,1, Matthew Larsonc, Richard Xub, Amanda L. Charbonneaua, Adam Schmidtb, Curtis Wilkersona,d, Robert L. Lasta,d, and Eran Picherskyb,2 aDepartments of Biochemistry and Molecular Biology and dPlant Biology, and cBioinformatics Core, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824-1319; and bDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 Communicated by Anthony R. Cashmore, University of Pennsylvania, Philadelphia, PA, April 20, 2009 (received for review December 19, 2008) We identified a cis-prenyltransferase gene, neryl diphosphate (FPP), and diterpene synthases use the C20-diphosphate inter- synthase 1 (NDPS1), that is expressed in cultivated tomato (Sola- mediate E,E,E-geranylgeranyl diphosphate (GGPP) (7). The num lycopersicum) cultivar M82 type VI glandular trichomes and enzymes that synthesize these intermediates are designated as encodes an enzyme that catalyzes the formation of neryl diphos- trans-prenyltransferases, and they consist of a family of struc- phate from isopentenyl diphosphate and dimethylallyl diphos- turally related proteins with representatives found in all branches phate. mRNA for a terpene synthase gene, phellandrene synthase of life (8). 1 (PHS1), was also identified in these glands. It encodes an enzyme In contrast, the isoprene units of some long-chain plant that uses neryl diphosphate to produce ␤-phellandrene as the terpenoids such as rubber and dolichols (the latter group of major product as well as a variety of other monoterpenes. The compounds is present in bacteria, fungi, and animals as well) are profile of monoterpenes produced by PHS1 is identical with linked to each other in the cis (Z) conformation (9, 10).
    [Show full text]
  • Queensland Health List of Approved Medicines
    Queensland Health List of Approved Medicines Drug Form Strength Restriction abacavir * For use in accord with PBS Section 100 indications * oral liquid See above 20 mg/mL See above tablet See above 300 mg See above abacavir + lamivudine * For use in accord with PBS Section 100 indications * tablet See above 600 mg + 300 mg See above abacavir + lamivudine + * For use in accord with PBS Section 100 indications * zidovudine tablet See above 300 mg + 150 mg + 300 mg See above abatacept injection 250 mg * For use in accord with PBS Section 100 indications * abciximab (a) Interventional Cardiologists for complex angioplasty (b) Interventional and Neuro-interventional Radiologists for rescue treatment of thromboembolic events that occur during neuroendovascular procedures. * Where a medicine is not TGA approved, patients should be made fully aware of the status of the medicine and appropriate consent obtained * injection See above 10 mg/5 mL See above abiraterone For use by medical oncologists as per the PBS indications for outpatient and discharge use only tablet See above 250 mg See above 500 mg See above acamprosate Drug and alcohol treatment physicians for use with a comprehensive treatment program for alcohol dependence with the goal of maintaining abstinence. enteric tablet See above 333 mg See above acarbose For non-insulin dependent diabetics with inadequate control despite diet; exercise and maximal tolerated doses of other anti-diabetic agents tablet See above 50 mg See above 100 mg See above acetazolamide injection 500 mg tablet 250 mg acetic acid ear drops 3% 15mL solution 2% 100mL green 3% 1 litre 6% 1 Litre 6% 200mL Generated on: 30-Aug-2021 Page 1 of 142 Drug Form Strength Restriction acetylcysteine injection For management of paracetamol overdose 2 g/10 mL See above 6 g/30 mL See above aciclovir cream Infectious disease physicians, haematologists and oncologists 5% See above eye ointment For use on the advice of Ophthalmologists only.
    [Show full text]