Calcium Chloride
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Data Sheet
1/6 Sodium iodate,KISHIDA CHEMICAL CO., LTD.,7183E-1,10/04/2019 Date of issue: 10/04/2019 Safety Data Sheet 1. Identification of the substance/mixture and of the company/undertaking Product identifier: Product name: Sodium iodate Product code (SDS NO): 7183E-1 Details of the supplier of the safety data sheet Manufacturer/Supplier: KISHIDA CHEMICAL CO., LTD. Address: 3-1, Honmachibashi, Chuo-ku,Osaka 540-0029,JAPAN Division: Safety Management Dept. of Chemicals Telephone number: +81-6-6946-8061 FAX: +81-6-6946-1607 e-mail address: [email protected] 2. Hazards identification GHS classification and label elements of the product Classification of the substance or mixture PHYSICAL AND CHEMICAL HAZARDS Oxidizing solids: Category 2 HEALTH HAZARDS Acute toxicity (Oral): Category 4 ENVIRONMENT HAZARDS Hazardous to the aquatic environment (Acute): Category 3 Hazardous to the aquatic environment (Long-term): Category 3 (Note) GHS classification without description: Not applicable/Out of classification/Not classifiable Label elements Signal word: Danger HAZARD STATEMENT May intensify fire; oxidizer Harmful if swallowed Harmful to aquatic life Harmful to aquatic life with long lasting effects PRECAUTIONARY STATEMENT Prevention Avoid release to the environment. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Keep/Store away from clothing/combustible materials. Take any precaution to avoid mixing with combustibles and/or other incompatible materials. Wash contaminated parts thoroughly after handling. Wear protective gloves and face protection. Do not eat, drink or smoke when using this product. Response In case of fire: Use appropriate media other than water for extinction. Rinse mouth. IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. -
Safety Data Sheet
SAFETY DATA SHEET Revision date 06-May-2020 Revision Number 1 1. Identification Product identifier Product Name CALCIUM IODATE, REAGENT Other means of identification Product Code(s) C1130 UN/ID no UN1479 Synonyms None Recommended use of the chemical and restrictions on use Recommended use No information available Restrictions on use No information available Details of the supplier of the safety data sheet Supplier Address Spectrum Chemical Mfg. Corp. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Emergency telephone number Emergency Telephone Chemtrec 1-800-424-9300 2. Hazard(s) identification Classification Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 2A Specific target organ toxicity (single exposure) Category 3 Oxidizing solids Category 2 Hazards not otherwise classified (HNOC) Not applicable Label elements Danger Hazard statements Causes skin irritation Causes serious eye irritation May cause respiratory irritation May intensify fire; oxidizer Appearance Crystalline powder Physical state Solid Odor Odorless Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Avoid breathing dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area Keep away from heat Keep/Store away from clothing/ combustible materials Take any precaution to avoid mixing with combustibles Wear protective gloves/eye protection/face protection Precautionary Statements - Response IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of water and soap If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash it before reuse IF INHALED: Remove person to fresh air and keep comfortable for breathing Call a POISON CENTER or doctor if you feel unwell In case of fire: Use CO2, dry chemical, or foam to extinguish Precautionary Statements - Storage Store in a well-ventilated place. -
Utilization of Lactic Acid in Human Myotubes and Interplay with Glucose and Fatty Acid Metabolism Received: 12 January 2018 Jenny Lund1, Vigdis Aas2, Ragna H
www.nature.com/scientificreports OPEN Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism Received: 12 January 2018 Jenny Lund1, Vigdis Aas2, Ragna H. Tingstad2, Alfons Van Hees2 & Nataša Nikolić1 Accepted: 11 June 2018 Once assumed only to be a waste product of anaerobe glycolytic activity, lactate is now recognized as Published: xx xx xxxx an energy source in skeletal muscles. While lactate metabolism has been extensively studied in vivo, underlying cellular processes are poorly described. This study aimed to examine lactate metabolism in cultured human myotubes and to investigate efects of lactate exposure on metabolism of oleic acid and glucose. Lactic acid, fatty acid and glucose metabolism were studied in myotubes using [14C(U)] lactic acid, [14C]oleic acid and [14C(U)]glucose, respectively. Myotubes expressed both the MCT1, MCT2, MCT3 and MCT4 lactate transporters, and lactic acid was found to be a substrate for both glycogen synthesis and lipid storage. Pyruvate and palmitic acid inhibited lactic acid oxidation, whilst glucose and α-cyano-4-hydroxycinnamic acid inhibited lactic acid uptake. Acute addition of lactic acid inhibited glucose and oleic acid oxidation, whereas oleic acid uptake was increased. Pretreatment with lactic acid for 24 h did not afect glucose or oleic acid metabolism. By replacing glucose with lactic acid during the whole culturing period, glucose uptake and oxidation were increased by 2.8-fold and 3-fold, respectively, and oleic acid oxidation was increased 1.4-fold. Thus, lactic acid has an important role in energy metabolism of human myotubes. Lactate is produced from glucose through glycolysis and the conversion of pyruvate by lactate dehydrogenase (LDH). -
Production of Dialdehyde Cellulose and Periodate Regeneration: Towards Feasible Oxidation Processes
Production of Dialdehyde Cellulose and Periodate Regeneration: Towards feasible oxidation processes Produktion av dialdehydcellulosa och återgenerering av perjodat: Mot möjliga oxidationsprocesser Elisabeth Höglund Department of Engineering and Chemical Sciences Chemistry 30 hp Supervisors: Susanne Hansson, Stora Enso & Gunilla Carlsson, Karlstad University Examinator: Thomas Nilsson 2015-09-25 ABSTRACT Cellulose is an attractive raw material that has lately become more interesting thanks to its degradability and renewability and the environmental awareness of our society. With the intention to find new material properties and applications, studies on cellulose derivatization have increased. Dialdehyde cellulose (DAC) is a derivative that is produced by selective cleavage of the C2-C3 bond in an anhydroglucose unit in the cellulose chain, utilizing sodium periodate (NaIO4) that works as a strong oxidant. At a fixed temperature, the reaction time as well as the amount of added periodate affect the resulting aldehyde content. DAC has shown to have promising properties, and by disintegrating the dialdehyde fibers into fibrils, thin films with extraordinary oxygen barrier at high humidity can be achieved. Normally, barrier properties of polysccharide films deteriorate at higher humidity due to their hygroscopic character. This DAC barrier could therefore be a potential environmentally-friendly replacement for aluminum which is utilized in many food packages today. The aim of this study was to investigate the possibilities to produce dialdehyde cellulose at an industrial level, where the regeneration of consumed periodate plays a significant role to obtain a feasible process. A screening of the periodate oxidation of cellulose containing seven experiments was conducted by employing the program MODDE for experimental design. -
Lactate Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida Albicans
International Journal of Molecular Sciences Article Lactate Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida albicans Jakub Suchodolski 1, Jakub Muraszko 1 , Przemysław Bernat 2 and Anna Krasowska 1,* 1 Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland; [email protected] (J.S.); [email protected] (J.M.) 2 Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łód´z,90-237 Łód´z,Poland; [email protected] * Correspondence: [email protected] Abstract: Candida albicans is an opportunistic pathogen that induces vulvovaginal candidiasis (VVC), among other diseases. In the vaginal environment, the source of carbon for C. albicans can be either lactic acid or its dissociated form, lactate. It has been shown that lactate, similar to the popular antifungal drug fluconazole (FLC), reduces the expression of the ERG11 gene and hence the amount of ergosterol in the plasma membrane. The Cdr1 transporter that effluxes xenobiotics from C. albicans cells, including FLC, is delocalized from the plasma membrane to a vacuole under the influence of lactate. Despite the overexpression of the CDR1 gene and the increased activity of Cdr1p, C. albicans is fourfold more sensitive to FLC in the presence of lactate than when glucose is the source of carbon. We propose synergistic effects of lactate and FLC in that they block Cdr1 activity by delocalization due to changes in the ergosterol content of the plasma membrane. Citation: Suchodolski, J.; Muraszko, J.; Bernat, P.; Krasowska, A. Lactate Keywords: Candida albicans; lactate; fluconazole; ergosterol; Cdr1 Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida albicans. -
Potassium Iodide (KI): Instructions for Children
Potassium Iodide (KI): Instructions for Children The thyroid gland in children is very sensitive to the effects of radioactive iodine. In the event of a nuclear emergency, it is important for adults to understand how to prepare the proper dosage of potassium iodide (KI) for young children. The following information will help you to give KI to your children properly. Children over 12 years to 18 years 2 tablets (whole or crushed) (130 mg) (who weigh at least 150 pounds) Children over 12 years to 18 years 1 tablet (whole or crushed) or 8 teaspoons (65 mg) (who weigh less than 150 pounds) Children over 3 years to 12 years 1 tablet (whole or crushed) or 8 teaspoons (65 mg) Children over 1 month to 3 years 4 teaspoons (32.5 mg) Babies at birth to 1 month 2 teaspoons (16.25 mg) Tablets can be crushed and mixed in many liquids. To take the tablet in liquid solution, use dosing directions under “Making a Potassium Iodide Liquid Mixture.” Take KI only as directed by public officials. Do not take more than 1 dose in 24 hours. More will not help you. Too much medicine may increase the chances of side effects. Making a Potassium Iodide Liquid Mixture 1. Put one 65 mg KI tablet into a small bowl and grind it into a fine powder using the back of a metal teaspoon against the inside of the bowl. The powder should not have any large pieces. 2. Add 4 teaspoons of water to the crushed KI powder in the bowl and mix until the KI powder is dissolved in the water. -
Determination of Iodate in Iodised Salt by Redox Titration
College of Science Determination of Iodate in Iodised Salt by Redox Titration Safety • 0.6 M potassium iodide solution (10 g solid KI made up to 100 mL with distilled water) • 0.5% starch indicator solution Lab coats, safety glasses and enclosed footwear must (see below for preparation) be worn at all times in the laboratory. • 250 mL volumetric flask Introduction • 50 mL pipette (or 20 and 10 mL pipettes) • 250 mL conical flasks New Zealand soil is low in iodine and hence New Zealand food is low in iodine. Until iodised salt was • 10 mL measuring cylinder commonly used (starting in 1924), a large proportion • burette and stand of school children were reported as being affected • distilled water by iodine deficiency – as high as 60% in Canterbury schools, and averaging 20 − 40% overall. In the worst cases this deficiency can lead to disorders such as Method goitre, and impaired physical and mental development. 1. Preparation of 0.002 mol L−1 sodium thiosulfate In earlier times salt was “iodised” by the addition of solution: Accurately weigh about 2.5 g of solid potassium iodide; however, nowadays iodine is more sodium thiosulfate (NaS2O3•5H2O) and dissolve in commonly added in the form of potassium iodate 100 mL of distilled water in a volumetric flask. (This gives a 0.1 mol L−1 solution). Then use a pipette to (KIO3). The Australia New Zealand Food Standards Code specifies that iodised salt must contain: “equivalent to transfer 10 mL of this solution to a 500 mL volumetric no less than 25 mg/kg of iodine; and no more than 65 flask and dilute by adding distilled water up to the mg/kg of iodine”. -
Solvent Variations of the Briggs-Rauscher Reaction Chelsea Trost1, Ana Figuereo1, Marie Roche1, Leonardo Albertini2, Luis C
MOL2NET, 2016 (2), http://sciforum.net/conference/mol2net-02/stureus-01 1 Solvent Variations of the Briggs-Rauscher Reaction Chelsea Trost1, Ana Figuereo1, Marie Roche1, Leonardo Albertini2, Luis C. Fernandez-Torres1,* 1School of Science, St. Thomas University, Miami Gardens, FL 33054, USA 2Miami Dade College, North Campus, Miami, FL, USA *Author to whom correspondence should be addressed; E-Mail: [email protected] Tel.: +1-305-474-6014; Fax: +1-305-628-6706. Received: / Accepted: / Published: Abstract: The Briggs-Rauscher (BR) oscillatory reaction is one of the more interesting and colorful oscillatory reactions. It has surpassed the demonstration realm, as it has found use as a method to assess antioxidant capacity. However, this application as an antioxidant assay is limited to water-soluble samples. In the constant search for different, novel applications, we report the effects of various sample solvents on the behavior of the BR reaction. Our investigation looked at how changes in the solvent used to dissolve samples altered the time intervals of BR reaction’s oscillations. The solvents used were ethanol, isopropanol, 1- propanol, acetone, and acetonitrile. Addition of ethanol had no effect on the BR oscillations. Isopropanol, 1- propanol, and acetone shorten the oscillation time. A test using acetonitrile discarded solvent polarity effects. Our results suggest that solvents that accelerate the enol pathway rate affect the oscillations of the BR reaction. Finally, samples can be safely dissolved in ethanol and used in the BR reaction. Keywords: oscillatory reaction, Briggs-Rauscher reaction, solvent variation, and enol pathway. Introduction The Briggs-Rauscher (BR) reaction is an oscillating reaction that changes between two cycles back and forth until it reaches equilibrium. -
United States Patent (10) Patent No.: US 8.450,378 B2 Snyder Et Al
USOO8450378B2 (12) United States Patent (10) Patent No.: US 8.450,378 B2 Snyder et al. (45) Date of Patent: *May 28, 2013 (54) ANTIVIRAL METHOD 5,944.912 A 8/1999 Jenkins ........................... 134/40 5,951,993 A 9, 1999 Scholz. ....... ... 424/405 (75) Inventors: Marcia Snyder, Stow, OH (US); David 6,022,5515,965,610 A 10/19992/2000 JampaniModak et ..... al. ... 424/405514,494 R. Macinga, Stow, OH (US); James W. 6,025,314. A 2/2000 Nitsch ... ... 510,221 Arbogast, Bath, OH (US) 6,034,133. A 3/2000 Hendley . 514,573 6,080,417 A 6/2000 Kramer ......................... 424/405 (73) Assignee: GOJO Industries, Inc., Akron, OH 6,090,395 A 7/2000 ASmuS (US) 6,107,261 A 8/2000 Taylor ........................... 510,131 6,110,908 A 8/2000 Guthery . 514,188 (*) Notice: Subject to any disclaimer, the term of this 8:35, A 858 Flying . patent is extended or adjusted under 35 6,183,766 B1 2/2001 Sine et al. ... 424/405 U.S.C. 154(b) by 716 days. 6,204.230 B1 3/2001 Taylor ........ ... 510,131 6,294, 186 B1 9/2001 Beerse et al. ... 424/405 This patent is Subject to a terminal dis- 6,319,958 B1 1 1/2001 Johnson ..... 514,739 claimer. 6,326,430 B1 12/2001 Berte ..... 524,555 6,352,701 B1 3/2002 Scholz. ... ... 424/405 (21) Appl. No.: 12/189,139 6,423,329 B1 7/2002 Sine et al. .. ... 424/405 6,436,885 B2 8/2002 Biedermann . ... 510,131 6,468,508 B1 10/2002 Laughlin .. -
Potential Biocides: Iodine-Producing Pyrotechnics Full Paper
Full Paper 1 DOI: 10.1002/prep.201700037 2 3 4 Potential Biocides: Iodine-Producing Pyrotechnics 5 Jimmie C. Oxley,*[a] James L. Smith,[a] Matthew M. Porter,[a] Maxwell J. Yekel,[a] and Jeffrey A. Canaria[a] 6 7 8 9 Abstract: Currently there is a need for specialized py- measured with bomb calorimetry and extraction and analy- 10 rotechnic materials to combat the threat of biological sis of I2 by UV-Vis. Of the mixtures analyzed, calcium iodate 11 weapons. Materials have been characterized based on their and aluminum was found to be the highest producer of I2. 12 potential to produce heat and molecular iodine gas (I2)to The heat output of this mixture and others can be tuned by 13 kill spore-forming bacteria (e.g. anthrax). One formulation, adding more fuel, with the cost of some iodine. Products of 14 already proven to kill anthrax simulants, is diiodine pent- combustion were analyzed by thermal analysis (SDT), XPS, 15 oxide with aluminum; however, it suffers from poor stability XRD, and LC/MS. Evidence for various metal iodides and 16 and storage problems. The heat and iodine gas output from metal oxides was collected with these methods. 17 this mixture and candidate replacement mixtures were 18 Keywords: Keywords missing!!! 19 20 21 22 1 Introduction The pyrotechnic mixtures were mixed as dry loose pow- 23 ders using a Resodyne Lab Ram Acoustic Mixer (acceleration 24 Previously we examined a series of oxidizers and fuels to 35–40 G). Heat released from the ignition of the pyrotechnic 25 determine their potential as explosive threats [1]. -
Antifungal Effects of Lactobacillus Species Isolated from Local Dairy Products
[Downloaded free from http://www.jpionline.org on Sunday, September 17, 2017, IP: 78.39.35.67] Original Research Article Antifungal effects of Lactobacillus species isolated from local dairy products Sahar Karami, Mohammad Roayaei, Elnaz Zahedi, Mahmoud Bahmani1, Leila Mahmoodnia2, Hosna Hamzavi, Mahmoud Rafieian-Kopaei3 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, 1Department of Pharmacology, Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, 3Department of Pharmacology, Medical Plants Research Center, Basic Health Sciences Institute, 2Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran Abstract Objective: The Lactobacillus is a genus of lactic acid bacteria which are regularly rod‑shaped, nonspore, Gram‑positive, heterogeneous, and are found in a wide range of inhabitants such as dairy products, plants, and gastrointestinal tract. A variety of antimicrobial compounds and molecules such as bacteriocin are produced by these useful bacteria to inhibit the growth of pathogenic microbes in the food products. This paper aims to examine the isolation of Lactobacillus from local dairies as well as to determine their inhibition effect against a number of pathogens, such as two fungi: Penicillium notatum and Aspergillus fulvous. Materials and Methods: Twelve Lactobacillus isolates from several local dairies. After initial dilution (10−1–10−3) and culture on the setting, de Man, Rogosa and Sharpe‑agar, the isolates were recognized and separated by phenotypic characteristics and biochemical; then their antifungal effect was examined by two methods. Results: Having separated eight Lactobacillus isolates, about 70% of the isolates have shown the inhabiting areas of antifungus on the agar‑based setting, but two species Lactobacillus alimentarius and Lactobacillus delbrueckii have indicated a significant antifungal effect against P. -
Potassium Iodide (KI) Preparation and Dosing Instructions for Use During a Nuclear Emergency to Make KI Solution (Liquid Form), Using Two 65 Mg KI Tablets
Potassium Iodide (KI) Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using two 65 mg KI Tablets If government authorities declare that a radiation emergency has occurred, you may have been exposed to radioactive iodine. Potassium iodide can prevent thyroid cancer in people who have been exposed to radioactive iodine. Potassium iodide is also known as KI. Children who have been exposed to radioactive iodine have a greater risk of thyroid cancer than adults do. You may need to make a KI solution (liquid form) for anyone who cannot swallow tablets. This sheet explains how to make and give the KI solution. FDA-approved KI tablets come in 65 mg and 130 mg strengths. Instructions for preparing the KI solution using two 65 mg tablets are given below. To Make the Potassium Iodide (KI) Solution You Will Need: Two 65 mg KI tablets Teaspoon Small bowl Four teaspoons of water Four teaspoons of a drink. We recommend any one of the following: ■ White milk ■ Chocolate milk ■ Orange juice ■ Soda (For example, cola) ■ Infant formula ■ Raspberry syrup ■ Water Directions for Making the Potassium Iodide (KI) Solution: Step 1. Soften the KI tablets: Put two 65 mg KI tablets into a small bowl. Add four teaspoons of water. Soak the tablets for one minute. Step 2. Crush the softened KI tablets: Use the back of the teaspoon to crush the tablets in the water. At the end of this step, there should not be any large pieces of KI. This makes the KI and water mixture.