Disruption of the Anaphase-Promoting Complex Confers Resistance to TTK Inhibitors in Triple-Negative Breast Cancer
Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer K. L. Thua,b, J. Silvestera,b, M. J. Elliotta,b, W. Ba-alawib,c, M. H. Duncana,b, A. C. Eliaa,b, A. S. Merb, P. Smirnovb,c, Z. Safikhanib, B. Haibe-Kainsb,c,d,e, T. W. Maka,b,c,1, and D. W. Cescona,b,f,1 aCampbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; bPrincess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; cDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7; dDepartment of Computer Science, University of Toronto, Toronto, ON, Canada M5G 1L7; eOntario Institute for Cancer Research, Toronto, ON, Canada M5G 0A3; and fDepartment of Medicine, University of Toronto, Toronto, ON, Canada M5G 1L7 Contributed by T. W. Mak, December 27, 2017 (sent for review November 9, 2017; reviewed by Mark E. Burkard and Sabine Elowe) TTK protein kinase (TTK), also known as Monopolar spindle 1 (MPS1), ator of the spindle assembly checkpoint (SAC), which delays is a key regulator of the spindle assembly checkpoint (SAC), which anaphase until all chromosomes are properly attached to the functions to maintain genomic integrity. TTK has emerged as a mitotic spindle, TTK has an integral role in maintaining genomic promising therapeutic target in human cancers, including triple- integrity (6). Because most cancer cells are aneuploid, they are negative breast cancer (TNBC). Several TTK inhibitors (TTKis) are heavily reliant on the SAC to adequately segregate their abnormal being evaluated in clinical trials, and an understanding of karyotypes during mitosis.
[Show full text]