Mclean12 2 07 Final.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Mclean12 2 07 Final.Indd View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UC Research Repository Beetle diversity in forest and pastoral areas, Whangamata, Coromandel Peninsula John A. McLean1 and Diane C. Jones2 1Department of Forest Sciences, Faculty of Forestry, The University of British Columbia, 3034-2424 Main Mall, Vancouver, B.C., Canada 2Entomologist – Diagnostics, Forest Biosecurity and Protection, Ensis – the joint forces of CSIRO and Scion, PB 3020, Rotorua, New Zealand Corresponding author’s email: [email protected] (Received 1 January 2007, revised and accepted 18 January 2007) Abstract Malaise traps were set out for four weeks in December 1997 to compare the beetle populations in kanuka bush, fern bush, a 25 year old mature radiata pine stand, a 6 year old radiata pine plantation, nearby hayfi elds, grassed foreshore areas and on coastal sand dunes. Greater numbers of beetle species were collected at the forested sites than at the pastoral, urban and sand dune sites. Th e greatest number of beetle species was collected in the mature radiata pine stand, which had a well developed understorey of shade tolerant native shrub species. Th e beetle faunas at forested locations had higher degrees of endemism. Habitats maintained by constant human activity had more adventive species. Th e most common species in the grassland habitats were the lucerne weevil Sitona discoideus and the click beetle Conoderus exsul, both adventive species. Th e more numerous species in the forested habitats included the bark mould beetle Salpingus bilunatus, the elaterid Panspoeus guttatus and the fungus weevil Liromus pardalis, all native species. Keywords: beetle diversity - malaise trapping - native bush - sand dunes - grasslands - pine plantations. Introduction Recent studies of the perceptions of local perception of naturalness represent residents and visitors to the Whangamata the biological realities of the plant and area, Coromandel Peninsula, of the animal species that currently inhabit this naturalness of local landscapes showed anthropogenically modifi ed landscape? that areas of native forest and beach areas Early settler records from the 18th (without houses) were deemed more century record that a tall native tree natural than modifi ed landscapes such forest once extended to the coastline in as fi elds, plantations, residential areas this part of the Coromandel Peninsula. and urban shopping areas (Fairweather Kauri (Agathis australis) dominated the & Swaffield 1999). How does this hills, whereas coastal swampy areas were New Zealand Natural Sciences (2006) 31: 25-42 26 New Zealand Natural Sciences 31 (2006) dominated by kahikatea (Dacrycarpus well represented across all trophic levels. dacrydioides). After waves of colonisation In New Zealand there are at least 5235 by Polynesians around 600 years BP and native species of beetles in 82 families as Europeans 200 years BP, the land showed assessed by Klimaszewski (1997), plus an the eff ects of major resource extraction, additional 354 introduced species. especially of timber and kauri gum. Adams (1883) reported that the area was Methods the most ruined and disfi gured part of New Zealand at that time. Against this Pairs of standard Malaise traps (Townes background, European settlers set about 1972), with 70% isopropyl alcohol establishing an agricultural economy in the collecting jars, were set out for based on cattle and sheep farming at the one month on 5 December 1997 at beginning of the 20th century. Th e trials each of eight collecting sites in the and tribulations of this period are well Whangamata area (Figure 1). Traps reported by Williamson (1988). Forests were oriented with the collecting jars of exotic pine species were planted and towards the north. Trapping for four the mosaic seen today is a refl ection of weeks in December was recommended by those species that established satisfactorily Hutcheson & Kimberley (1999) after an to form present day plantations. Th e earlier intensive season-long assessment of area around Whangamata consists of Malaise trapping for beetles (Hutcheson protected shorelines with extensive 1990) showed that collections during sand dunes behind beaches exposed to this period gave the best discrimination the Pacifi c Ocean and an urban centre among habitats. that serves a small resident population To defi ne the composition of vegetation of 5,000 that swells to 40,000 during around each trapping location, 500 m2 summer. Farmers maintain pastoral plots were set up in collaboration with activities on the coastal plains and in C. E. Ecroyd (Curator, National Forestry the major valleys. Radiata pine (Pinus Herbarium, Scion, PB 3020, Rotorua, radiata) plantations have been established New Zealand) following the procedures on the inland hills and recolonising native of Allen and McLennan (1983) as bush has been retained on private land modifi ed with respect to cover scores by and in places such as the Wentworth Leathwick (1987). A full species list of Valley Reserve. plants for each area is available from the Th e objectives of the present study authors on request. were to evaluate diversity and degree of Trapping sites endemism of beetles (Coleoptera) in a range of habitats on the sand dunes of Site 1: The Wharekawa Harbour sand Wharekawa and the Otahu River estuary dunes (Figure 1), the grass walkways between beachfront properties at Whangamata, The dunes have been planted with pastures, a young radiata pine plantation, radiata pine and maritime pine (Pinus a mature radiata pine stand, a fern- pinaster). The two Malaise traps were dominated bush area and a kanuka- set up 50 m apart in leeward hollows dominated bush reserve. Th e Coleoptera of the front dunes, and were partially is the largest of the insect orders and is protected from on-shore winds by the J.A. MCLEAN & D.C. JONES: Beetle diversity in the Whangamata area 27 pines. The major ground cover was arundinacea), knotty clubrush, Indian harestail (Lagurus ovata). Other species doad (Cynodon dactylon) and kikuyu grass present were pohuhue (Muehlenbeckia (Pennisteum clandestinum). Trap 2B was complexa), spinifex (Spinifex sericeus), set out in an area that was dominated by knotty clubrush (Isolepis nodosa) and the spinifex, catsear (Hypocheris radicata), sand dune moss (Thuidium furfurosum). knotty clubrush and lupin (Lupinus arboreus). Sand coprosma (Coproma Site 2: The Otahu River sand dunes acerosa), pohuhue and shore bindweed Several species have been planted (Calystegia soldanella) trailed through the throughout this heavily used area in an areas around both traps. effort to stabilize the sand dunes. The Site 3: The grassed walkways that provide dunes provide access to the ocean beach public access to the main Whangamata as well as protected waters at the mouth of beach from Pohutukawa Drive the Otahu River. Trap 2A was set out in a well grassed area with a small pohutukawa These sites were very dry in the middle of (Metrosideros excelsa) to the south. The summer. Traps 3A and 3B were anchored major grasses present were cocksfoot on the southern side of two walkways. (Dactylis glomerata), tall fescue (Festuca Kikuyu grass was the dominant species Figure 1. Locations of the eight collecting sites in the Whangamata area where pairs of Malaise traps were set out in December 1997. Note the disjunction between 41” and 50” parallels. The town of Whangamata is located at 37° 13’ 40” S, 175° 52’ 50” E. 28 New Zealand Natural Sciences 31 (2006) at each site and each trap had a coast through to the forest floor to enable Banksia tree (Banksia integrifolia) close by. shade tolerant native species to survive. Bare ground made up 30% and 20% of We tabulated 21 native species around the area at Traps 3A and 3B, respectively. trap 6A and 28 species around trap Some paspalum (Paspalum dilatatum) 6B. Among these were mapou (Myrsine grew close to the fences, but did not australis), karamu (Coprosma robusta), spread over the walkways. mamaku (Cyathea medullaris), rangiora (Brachyglottis repanda), silver fern, fi ve Site 4: Pastures in the Wentworth Valley fi nger (Pseudopanax arboreus), dwarf ti locked up for hay production (Cordyline banksii) and bracken. Trap 4A was set out in a paddock on the Site 7: Fern Bush south side of Wentworth Valley Road, whereas Trap 4B was in a paddock on the Beyond the kanuka (Kunzea ericoides) north side of the road. The Wentworth and mamaku edge of this fern-rich site River ran through the north paddock. was an emergent vegetation of rewarewa The main grasses around Trap 4A were (Knightia excelsa) and towai (Weinmannia sweet vernal (Anthoxanthum odoratum) silvicola). Silver fern was the dominant and brown top (Agrostis capillaris). Sweet pteridophyte. Rangiora, kawakawa vernal was also the major pasture grass (Macropiper excelsum), fi ve fi nger and around Trap 4B with Yorkshire fog (Holcus mahoe (Melicytis ramifl orus), were present lanatus), lotus (Lotus pedunculatus), red in height tier 4 (2-5 m). We tabulated 18 clover (Trifolium pretense), and paspalum and 29 plant species around traps 7A and species also present. 7B, respectively. Several epiphytes were also recorded. Traps were located at least Site 5: A 6 year old second growth radiata 10 m within this bush remnant. pine plantation on an east facing slope 25 m below the Pa Road Lookout Site 8: The kanuka-dominated native bush near the start of the Wentworth Purple pampus grass (Cortaderia jubata) Valley Reserve walking track was clearly visible at the edge of the plantation and also scattered through- Trap 8A was set out in an area rich in out the stand along with tutu (Coriaria silver fern, mapou and nikau (Rhopalostylis arborea). Bare soil made up 40% and sapida). Wheki (Dicksonia squarossa) bracken (Pteridium esculentum), was was also common in the understorey. widely distributed at low density. Silver We recorded 30 species at this location fern (Cyathea dealbata), was moderately including four epiphytes.
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • A Baseline Invertebrate Survey of the Knepp Estate - 2015
    A baseline invertebrate survey of the Knepp Estate - 2015 Graeme Lyons May 2016 1 Contents Page Summary...................................................................................... 3 Introduction.................................................................................. 5 Methodologies............................................................................... 15 Results....................................................................................... 17 Conclusions................................................................................... 44 Management recommendations........................................................... 51 References & bibliography................................................................. 53 Acknowledgements.......................................................................... 55 Appendices.................................................................................... 55 Front cover: One of the southern fields showing dominance by Common Fleabane. 2 0 – Summary The Knepp Wildlands Project is a large rewilding project where natural processes predominate. Large grazing herbivores drive the ecology of the site and can have a profound impact on invertebrates, both positive and negative. This survey was commissioned in order to assess the site’s invertebrate assemblage in a standardised and repeatable way both internally between fields and sections and temporally between years. Eight fields were selected across the estate with two in the north, two in the central block
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Bio-Protection & Ecology Division Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal Mike Bowie Lincoln University Wildlife Management Report No. 47 ISSN: 1177‐6242 ISBN: 978‐0‐86476‐222‐1 Lincoln University Wildlife Management Report No. 47 Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal Mike Bowie Bio‐Protection and Ecology Division P.O. Box 84 Lincoln University [email protected] Prepared for: Lake Rotokare Scenic Reserve Trust October 2008 Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal 1. Introduction Rotokare Scenic Reserve is situated 12 km east of Eltham, South Taranaki, and is a popular recreation area for boating, walking and enjoying the scenery. The reserve consists of 230 ha of forested hill country, including a 17.8 ha lake and extensive wetland. Lake Rotokare is within the tribal area of the Ngati Ruanui and Ngati Tupaea people who used the area to collect food. Mature forested areas provide habitat for many birds including the fern bird (Sphenoeacus fulvus) and spotless crake (Porzana tabuensis), while the banded kokopu (Galaxias fasciatus) and eels (Anguilla australis schmidtii and Anguilla dieffenbachii) are found in streams and the lake, and the gold‐striped gecko (Hoplodactylus chrysosireticus) in the flax margins. In 2004 a broad group of users of the reserve established the Lake Rotokare Scenic Reserve Trust with the following mission statements: “To achieve the highest possible standard of pest control/eradication with or without a pest‐proof fence and to achieve a mainland island” “To have due regard for recreational users of Lake Rotokare Scenic Reserve” The Trust has raised funds and erected a predator exclusion fence around the 8.4 km reserve perimeter.
    [Show full text]
  • 293 315 Nikitskij.P65
    Åâðàçèàòñêèé ýíòîìîë. æóðíàë 4(4): 293315 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2005 Ñèñòåìàòè÷åñêèé ñïèñîê æåñòêîêðûëûõ (Insecta, Coleoptera) Óäìóðòèè Checklist of beetles (Insecta, Coleoptera) of Udmurtia Ñ.Â. Äåäþõèí*, Í.Á. Íèêèòñêèé**, Â.Á. Ñåì¸íîâ*** S.V. Dedyukhin*, N.B. Nikitsky**, V.B. Semenov*** * Êàôåäðà ýêîëîãèè æèâîòíûõ, Óäìóðòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, óë. Óíèâåðñèòåòñêàÿ 1, Èæåâñê 426034 Ðîññèÿ. E-mail: [email protected]. * Department of animal ecology, Udmurt State University, Universitetskaya str. 1, Izhevsk 426034 Russia. ** Çîîëîãè÷åñêèé ìóçåé ÌÃÓ èì. Ì.Â. Ëîìîíîñîâà, óë. Áîëüøàÿ Íèêèòñêàÿ 6, Ìîñêâà 125009 Ðîññèÿ. Email: [email protected]. ** Zoological Museum of Moscow Lomonosov State University, Bolshaya Nikitskaya 6, Moscow 125009 Russia. *** Èíñòèòóò ìåäèöèíñêîé ïàðàçèòîëîãèè è òðîïè÷åñêîé ìåäèöèíû èì. Å.È. Ìàðöèíîâñêîãî, óë. Ìàëàÿ Ïèðîãîâñêàÿ 20, Ìîñêâà 119435 Ðîññèÿ. *** Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Malaya Pirogovskaya 20, Moscow 119435 Russia. Êëþ÷åâûå ñëîâà: Coleoptera, ôàóíà, Óäìóðòèÿ. Key words: Coleoptera, fauna, Udmurtia. Ðåçþìå. Ïðèâîäèòñÿ ïîëíûé ñïèñîê æåñòêîêðûëûõ óêàçàííûå â ïåðâîì ñïèñêå, çäåñü îòñóòñòâóþò, ÷òî, íàñåêîìûõ (Coleoptera) Óäìóðòèè, ãäå îòìå÷åíî íåìíî- ïî-âèäèìîìó, ãîâîðèò îá èõ îøèáî÷íîì îïðåäåëåíèè. ãèì áîëåå 2400 âèäîâ æóêîâ èç 91 ñåìåéñòâà. Âïåðâûå Ñ íàèáîëüøåé (ïðîïîðöèîíàëüíî îáùåìó ïîòåíöèàëü- äëÿ ðåãèîíà ïðèâåäåíî 1482 âèäà (ïîìå÷åíû â ñïèñêå íîìó ÷èñëó âèäîâ) ïîëíîòîé áûëè èçó÷åíû ñåìåéñòâà: çâåçäî÷êîé *, ñ ïðàâîé ñòîðîíû îò íàçâàíèÿ âèäà). Carabidae (139 âèäîâ), Cerambycidae (58), Scarabae- Abstract. A complete checklist (2400 species in 91 idae (s. l.) (57 âèäîâ), Elateridae (50 âèäîâ), à òàêæå families) of the beetles (Coleoptera) of Udmurtia is provided. Curculionidae (s. l.) (76), Buprestidae (20), Coccinellidae 1482 species are reported from Udmurtia for the first time, (17), äëÿ îñòàëüíûõ ïðèâåäåíû ëèøü îòäåëüíûå ïðåä- as indicated by an asterisk (*) in the list.
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • Conservation Biology Project Reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand
    Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Edited by Nick Dickinson & Mike Bowie Lincoln University Wildlife Management Report No. 73 2020 ©Department of Pest-management & Conservation, Lincoln University ISSN: 1179-7738 ISBN: 978-0-86476-451-5 Lincoln University Wildlife Management Report No. 73 September 2020 Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Cleardale Station looking towards Rakaia River (Photo: Tanmayi Pagadala) Edited by Nick Dickinson and Mike Bowie Department of Pest-management & Conservation, Lincoln University, PO Box 85084, Lincoln 7647 Email:[email protected] i Contents List of Tables ............................................................................................................................v List of Figures .......................................................................................................................... vi Introduction ............................................................................................................................ 1 Cleardale and Taniwha Stations ............................................................................................... 2 : Habitat Preference of Birds ................................................................................... 3 Fraser Gurney Abstract ...............................................................................................................................................3
    [Show full text]
  • Deadwood and Saproxylic Beetle Diversity in Naturally Disturbed and Managed Spruce Forests in Nova Scotia
    A peer-reviewed open-access journal ZooKeysDeadwood 22: 309–340 and (2009) saproxylic beetle diversity in disturbed and managed spruce forests in Nova Scotia 309 doi: 10.3897/zookeys.22.144 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia DeLancey J. Bishop1,4, Christopher G. Majka2, Søren Bondrup-Nielsen3, Stewart B. Peck1 1 Department of Biology, Carleton University, Ottawa, Ontario, Canada 2 c/o Nova Scotia Museum, 1747 Summer St., Halifax, Nova Scotia Canada 3 Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada 4 RR 5, Canning, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Jan Klimaszewski | Received 26 March 2009 | Accepted 6 April 2009 | Published 28 September 2009 Citation: Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia In: Majka CG, Klimaszewski J (Eds) Biodiversity, Bio- systematics, and Ecology of Canadian Coleoptera II. ZooKeys 22: 309–340. doi: 10.3897/zookeys.22.144 Abstract Even-age industrial forestry practices may alter communities of native species. Th us, identifying coarse patterns of species diversity in industrial forests and understanding how and why these patterns diff er from those in naturally disturbed forests can play an essential role in attempts to modify forestry practices to minimize their impacts on native species. Th is study compares diversity patterns of deadwood habitat structure and saproxylic beetle species in spruce forests with natural disturbance histories (wind and fi re) and human disturbance histories (clearcutting and clearcutting with thinning).
    [Show full text]
  • Beetles in a Suburban Environment: a New Zealand Case Study. The
    tl n brbn nvrnnt: lnd td tl n brbn nvrnnt: lnd td h Idntt nd tt f Clptr n th ntrl nd dfd hbtt f nfld Alnd (4-8 GKhl . : rh At SI lnt rttn Mnt Albrt rh Cntr rvt Alnd lnd • SI lnt rttn prt • EW EAA EAME O SCIEIIC A IUSIA ESEAC 199 O Ο Ν Ε W Ε Ν ttr Grnt rd Τ Ε Ρ Ο Ι Ο Τ ie wi e suo o a oey Sciece eseac Ga om e ew eaa oey Gas oa is suo is gaeuy ackowege Ρ EW EAA SI ' EAME O lnt SCIEIIC A rttn IUSIA Wāhn ESEAC Mn p Makig Sciece Wok o ew eaa KUSCE G eees i a suua eiome a ew eaa case suy e ieiy a saus o Coeoea i e aua a moiie aias o yie Aucka (197-199 / G Kusce — Aucka SI 199 (SI a oecio eo ISS 11-1 ; o3 IS -77-59- I ie II Seies UC 5957(93111 © Cow Coyig uise y SI a oecio M Ae eseac Cee iae ag Aucka ew eaa eceme 199 ie y Geea iig Seices eso ew eaa Etiam pristina in aua Asο i a aua seig summa securitas et futura sweet tranquility and nature ., OISIECE e oe-eeig emoyci eee ioycus uuus (ou o is aie ooca os kaikaea (acycaus acyioies om e yie eee suey aea Aucka ew eaa e wie gaues o e eee ae oe cuses a ass ees is eee as a eic saus o uike a o e uaaa (Seoo as ossi eiece sows a e weei gou was iig i uassic imes way ack i e ea o e iosaus a gymosems moe a 1 miio yeas ago OEWO As a small boy in the 1930s I used to collect butterflies on the South Downs in southern England.
    [Show full text]