3D View of the Base of the Zechstein in the SPBA Area, (Viewed from the South; Red Colours Are Shallow and Blue Indicates the Greatest Depths)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
G Refs Atlas2020.Pdf
REFERENCES REFERENCES G. REFERENCES Fastnet Basin, offshore southwest Ireland. Journal of Micropalaeontology, 5, 19-29. AINSWORTH, N. R. & RILEY, L. A. 2010. Triassic to Middle Jurassic stratigraphy of the Kerr McGee 97/12-1 exploration ABBOTTS, I. 1991. United Kingdom oil and gas fields, 25 years commemorative volume. Memoir of the Geological Society well, offshore southern England. Marine & Petroleum Geology, 27, 853-894. of London, No.14. AINSWORTH, N. R., HORTON, N. F. & PENNEY, R. A. 1985. Lower Cretaceous micropalaeontology of the Fastnet ACTLABS. 2018. Report on 10 Ar-Ar analyses carried out as part of project IS16/04. IS16_04_ActLabs_raddatingrpt_Ar- Basin, offshore southwest Ireland. Marine & Petroleum Geology, 2, 341-349. Ar.xlsx. [Copy included within the Digital Addenda of this Atlas] AINSWORTH, N. R., BAILEY, H. W., GUEINN, K. J., RILEY, L. A., CARTER, J. & GILLIS, E. 2014. Revised AGNINI, C., FORNACIARI, E., RAFFI, I., CATANZARITI, R., PÄLIKE, H., BACKMAN, J. & RIO, D. 2014. stratigraphic framework of the Labrador Margin through integrated biostratigraphic and seismic interpretation, Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Offshore Newfoundland and Labrador. Abstracts of the 4th Atlantic Conjugate Margins Conference. Go Deep: Back Stratigraphy, 47/2, 131–181. to the Source, 89-90. AINSWORTH, N. R. 1985. Upper Jurassic and Lower Cretaceous Ostracoda from the Fastnet Basin, offshore southwest AINSWORTH, N. R., BRAHAM, W., GREGORY, F. J., JOHNSON, B & KING, C. 1998a. A proposed latest Triassic to Ireland. Irish Journal of Earth Sciences. 7, 15-33. earliest Cretaceous microfossil biozonation for the English Channel and its adjacent areas. -
A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. -
Developing a Geological Framework
21/2/12 GeolFrameworkPaper_postreview_v2acceptchanges_editorcomments New insights from 3D geological models at analogue CO2 storage sites in Lincolnshire and eastern Scotland, UK. Alison Monaghan1*, Jonathan Ford2, Antoni Milodowski2, David McInroy1, Timothy Pharaoh2, Jeremy Rushton2, Mike Browne1, Anthony Cooper2, Andrew Hulbert2 and Bruce Napier2 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK. 2 British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, UK. * Corresponding author (email [email protected] (Approx.15,600 words in total, 25 figures) SUMMARY: Subsurface 3D geological models of aquifer and seal rock systems from two contrasting analogue sites have been created as the first step in an investigation into methodologies for geological storage of carbon dioxide in saline aquifers. Development of the models illustrates the utility of an integrated approach using digital techniques and expert geological knowledge to further geological understanding. The models visualize a faulted, gently dipping Permo-Triassic succession in Lincolnshire and a complex faulted and folded Devono-Carboniferous succession in eastern Scotland. The Permo-Triassic is present in the Lincolnshire model to depths of -2 km OD, and includes the aquifers of the Sherwood Sandstone and Rotliegendes groups. Model-derived thickness maps test and refine Permian palaeogeography, such as the location of a carbonate reef and its associated seaward slope, and the identification of aeolian dunes. Analysis of borehole core samples established average 2D porosity values for the Rotliegendes (16%) and Sherwood Sandstone (20%) groups, and the Zechstein (5%) and Mercia Mudstone (<10%) groups, which are favourable for aquifer and seal units respectively. Core sample analysis has revealed a complex but well understood diagenetic history. -
The Global Stratotype Sections and Point (GSSP) for the Base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria)
162 162 Articles by Hillebrandt, A.v.1, Krystyn, L.2, Kürschner, W.M.3, Bonis, N.R.4, Ruhl, M.5, Richoz, S.6, Schobben, M. A. N.12, Urlichs, M.7, Bown, P.R.8, Kment, K.9, McRoberts, C.A.10, Simms, M.11, and Tomãsových, A13 The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria) 1 Institut für Angewandte Geowissenschaften, Technische Universität, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria. E-mail: [email protected] 3 Department of Geosciences and Centre of Earth Evolution and Dynamics (CEED), University of Oslo, PO box 1047, Blindern, 0316 Oslo, Norway. E-mail: [email protected] 4 Shell Global Solutions International B.V., Kessler Park 1, 2288 GS, Rijswijk, the Netherlands. E-mail: [email protected] 5 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. E-mail: [email protected] 6 Commission for the Palaeontological and Stratigraphical Research of Austria, Austrian Academy of Sciences c/o Institut of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria. E-mail: [email protected] 7 Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 8 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. E-mail: [email protected] 9 Lenggrieser Str. -
Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite
Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite Paweł Zdanowski & Tomasz Solarski PGNiG SA (Polish Oli & Gas Company), Exploration and Production Branch Underexplored Plays - Part III 31-X-2018 & 01-XI-2018 Stavanger Hydrocarbon Plays from West Poland: Zechstein Limestone (Ca1) and Main Dolomite (Ca2) Presentation outline: Palaeogeography of Zechstein • Southern Permian Basin and Northern Permian Basin • Correlation of carbonate units between SBP and NPB Zechstein Limestone (Brońsko Gas Field) • Hydrocarbon Play. • Pattern Recognition from Seismic. Main Dolomite (BMB and LMG oil & gas fields) • Hydrocarbon Play. • Pattern Recognition from Seismic. • Analysis of Seismic Attributes. • Seismic Modeling. Late Permian Paleogeography from Blakely (2014) Tucker, 2016 After Scotese, 2002 European Southern Permian Basin Zechstein Sea Connected to Pantalassa Ocean 2000km to N/NE. Possible connection to Paleo-Tethys through the Polish Sub-Basin to the SE ?? Palaeo-latitude: 10-20°. Climate extremely arid. After Scotese, 2012 Sketch map of Permian sedimentary basin in north-west Europe Dziękuję za uwagę Stavanger Warsaw Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 2003 Polish Zechstein Basin ….stratigraphy Leine Na2 A2 Stassfurt Ca2 A1g Na1 A1d Werra Ca1 Wagner & Peryt. 1997 Słowakiewicz & Mikołajewski, 2009 Tucker, 2016 Comparison of the Zechstein development of the NPB with the classic SPB Evans et al. 2003 Madeleine et al. 2018 Zechstein Limestone – Ca1 (≈ Argyll Carbonate Member) Zechstein basin, showing the position of the Brandenburg-Wolsztyn-Pogorzela palaeo-High Basin facies of the Zechstein Limestone in Poland, showing the occurrence of isolated reefs related to the Brandenburg-Wolsztyn-Pogorzela palaeo-High. isolated reefs (rimmed platform) Peryt et al. -
Stratigraphical Chart of the United Kingdom: Northern Britain
STRATIGRAPHICAL CHART OF THE UNITED KINGDOM: NORTHERN BRITAIN 1 2 3 4 5 6 7 8 9 10 11 12 BGS Geological Time Chart North-west Approaches/ Northern Isles Northern North Sea Northern Highlands Western Isles & Grampian Midland Valley Central North Sea South of Northern Isle of Man & Northern Hebrides Shelf Inner Hebrides Highlands of Scotland Scotland Ireland northern Irish Sea England Eon Era Series/ Stage/Age age (Ma) Period Epoch System/ Sub-era 0.01 Holocene Late 0.13 Ulster Glacigenic Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Group Caledonia Glacigenic Group Caledonia Glacigenic Group Britannia Britannia Britannia Britannia Britannia Britannia Britannia Britannia British Coastal British Coastal Catchments British Coastal British Coastal British Coastal British Coastal Benburb Group British Coastal British Coastal Catchments Catchments Catchments Catchments Catchments Catchments Catchments Mid Deposits Group Group Deposits Group Group Deposits Group Deposits Group Group Deposits Group Group Deposits Group Deposits Group Deposits Group Group Albion Group Albion Group Albion Group Albion Glacigenic Group Glacigenic Group Glacigenic Group Glacigenic Group The Geological Society 0.78 Pleistocene* nary Nordland Early Group Quater Scale: 1 cm = 0.5 Ma Compiled by C N Waters 1.8 Nordland Nordland Group Group Cartography by P Lappage L Gelasian Pliocene Residual Buchan Deposits Gravels Formation Piacenzian 2.6 Group 3.6 E Zanclean 5.3 BGS contributors: Messinian 7.2 L Tortonian Britannia M C Akhurst, C A Auton, R P Barnes, A J M Barron, M A E Browne, M T Dean, J D Floyd, M R Gillespie, 11.6 Brassington Cenozoic Serravallian Catchments Miocene M Langhian 13.6 Formation P M Hopson, M Krabbendam, A G Leslie, A A McMillan, D Millward, W I Mitchell, K Smith, D Stephenson, Neogene 16.0 Group P Stone, and C N Waters. -
3D Seismic Reflection Data Reveal Syn-Depositional Halokinesis in The
This manuscript is a EarthArxiv preprint and had been submitted for publication in the AAPG Bulletin. Please note that this manuscript has not been peer-reviewed. Subsequent versions of this manuscript may, thus, have slightly different content. If accepted, the final version of this manuscript will be available via the “Peer-reviewed Publication DOI” link on the right- hand side of this webpage. Please feel free to contact any of the authors directly; We welcome your feedback. 1 3D seismic reflection data reveal syn-depositional halokinesis in the 2 Zechstein Supergroup (Lopingian), Central North Sea, UK 3 Amir Joffe 1*, Christopher A-L. Jackson2, Leonardo M. Pichel3 4 1. Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial 5 College London, South Kensington Campus, SW7 2BP, UK 6 2. Department of Earth and Environmental Sciences, The University of Manchester, 7 Williamson Building, Oxford Road, Manchester, M13 9PL, UK 8 3. Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, 9 Norway 10 Abstract 11 Salt tectonics is typically caused by the flow of mobile evaporites in response to post- 12 depositional gravity gliding and/or differential loading by overburden sediments. This situation 13 is considerably more complex near the margins of salt basins, where carbonate and clastic rocks 14 may be deposited at the same time and interbedded with, more mobile, evaporite strata. In these 15 cases, syn-depositional salt flow may occur due to density differences in the deposited 16 lithologies, although our understanding of this process and related produces is relatively poor. 17 We here use 3D seismic reflection and borehole data from the Devil’s Hole Horst, West Central 18 Shelf, offshore UK to understand the genesis, geometry and kinematic of intra-Zechstein 19 Supergroup (Lopingian) minibasins and their effect on post-depositional salt deformation. -
Induced Seismicity of the Groningen Gas Field: History and Recent Developments K
Induced seismicity of the Groningen gas field: History and recent developments K. van Thienen-Visser1 and J. N. Breunese1 Abstract For the large Groningen field, the first seismic event was Induced seismicity of the Groningen gas field is caused by recorded in 1991. The largest magnitude was an ML 3.6 event the production of gas. Because of the large areal extent of the on 16 August 2012. Even though the magnitude of the event reservoir, the long history of depletion, and the available data sets was, seismologically speaking, not high, intensities as high as VI (which exist as a result of consequences and public unrest caused were observed because of the shallow depth of the event (3 km, by induced seismicity), the field presents a valuable case for i.e., reservoir depth) and the soft surface soils in the area (TNO, studying the relationships among geologic, flow-dynamic, geo- 2013a), causing damage to houses in the area. mechanical, and seismological models. Gas production from the Until 2012, a maximum magnitude of 3.9, with a probabil- Groningen field started in 1963. Induced seismicity of the field ity of exceedance of 16% (van Eck et al., 2006), was seen as the first was recorded in 1991 (ML 2.4). During the subsequent 10 upper size limit for induced seismicity in the north of the Nether- years, induced seismicity stayed at a rate of about five events (ML lands. However, since 2003, seismicity in the field has increased ≥ 1.5) per year. Starting in 2003, the number of events and mag- in number and magnitude. -
REGIONAL GEOLOGY by Graham K. Lott
CHAPTER II REGIONAL GEOLOGY by Graham K. Lott The ‘quarrying’ and use of local stone in Notting- the Triassic comprises a thick succession of non- hamshire, for both building and decorative purposes, marine, green-grey to reddish brown sandstones, dates back to Roman times. However, the lithological siltstones and mudstones, the latter including thinly units that characterise the geological succession interbedded, grey-green, dolomitic, very fine grained within the county contain only a few beds of stone sandstones (known locally as skerry). In contrast, the suitable for these purposes. This lack of indigenous early Jurassic marine succession is only sporadically stone useful for decorative carving is reflected in the exposed along the northern edge of the low-lying composition of the suite of carved stone fragments Vale of Belvoir and comprises a succession of grey that have been studied as part of this Corpus project. limestones and mudstones (Lias Group). The eastern By far the majority of the stones examined consist part of the county is locally blanketed by extensive of lithologies (primarily sandstones and limestones) tracts of glacial and alluvial sediments (unconsolidated sourced from outside the county border. sands, gravels, clays and muds) of Quaternary age. carboniferous THE GEOLOGY OF NOTTINGHAMSHIRE Pennine Coal Measures Group Nottinghamshire has a relatively simple geological The Carboniferous rocks that crop out in the west of succession comprising a sequence of eastwards- the county form part of the Pennine Coal Measures dipping sedimentary rock units whose outcrops Group. This succession is best known economically extend from north to south across the county (see for its coal reserves but also contains a number of Fig. -
Geology of the Groningen Field – an Overview
Netherlands Journal of Geosciences — Geologie en Mijnbouw |96 – 5 | s3–s15 | 2017 doi:10.1017/njg.2017.22 Geology of the Groningen field – an overview JandeJager1,∗ & Clemens Visser2 1 Nassaukade 42, 2281 XD Rijswijk, the Netherlands 2 Nederlandse Aardolie Maatschappij B.V., Schepersmaat 2, 9405 TA Assen, the Netherlands ∗ Corresponding author. Email: [email protected] Manuscript received: 27 February 2017, accepted: 21 July 2017 Abstract After more than half a century of production and with some 350 wells, the Groningen gas field must be one of the best-studied gas fields in the world. Initially, it was considered to be relatively simple and behaving like one big tank. Now that it is entering a phase of declining production it has become clear that many subtleties are not fully understood yet. Prediction and management of subsidence and induced earth tremors require a detailed understanding of the field geology. In addition, an optimum gas recovery is only possible if details of, for example, reservoir quality distribution and faulting, that did not appear relevant before, are well understood. The large Groningen field comprises a structurally high block during much of its history, probably already from Devonian times onwards. The desert sandstones of the Rotliegend reservoir exhibit a strong south-to-north proximal–distal relationship. Whilst diagenesis has in many fields led to deterioration of reservoir properties, this effect is small in the Groningen field. The field is dipping to the north, and bounded by a series ofnormal faults in the west, south and east. Almost all faults are normal extensional faults, but locally inverse reactivation has led to small pop-up structures. -
Triassic: Seasonal Rivers, Dusty Deserts and Saline Lakes
Triassic: seasonal rivers, dusty deserts and saline lakes Ruffell, A., & Hounslow, M. (2006). Triassic: seasonal rivers, dusty deserts and saline lakes. In P. F. Rawson, & P. Brenchley (Eds.), The Geology of England & Wales. (pp. 295-325). Geological Society of London. Published in: The Geology of England & Wales. Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:28. Sep. 2021 Triassic: seasonal rivers, 13 dusty deserts and saline lakes M. W. HOUNSLOW & A. H. RUFFELL The collision of Siberia and the Kazakstan microplate with European palaeoenvironmental signatures the eastern side of the Fennoscandia continent in the Permian amalgamated the last major continental fragments to produce The Permian witnessed the fragmentation of the core of the the supercontinent Pangaea, which persisted into the Jurassic Variscan Mountains into a number of separate areas, such as the Armorican, Bohemian and Iberian massifs (Fig. -
Geology of Gas and Oil Under the Netherlands
Geology of Gas and Oil under the Netherlands Geology of Gas and Oil under the Netherlands Selection of papers presented at the 1993 International Conference of the American Association of Petroleum Geologists, held in The Hague Edited by H.E. Rondeel Institute of Earth Sciences, Vrije Unlversiteit, Amsterdam, the Netherlands D.A.J. Batjes The Hague, the Netherlands W.H. Nieuwenhuijs Delft University of Technology, Delft, the Netherlands The Royal Geological and Mining Society of the Netherlands· KNGMG Kluwer Academic Publishers DORDRECHT I BDSTON I LONDON Library of Congress Cataloging-in-Publication Data Geology of gas and 011 under the Netherlands I edlted by H.E. Rondeel. D.A.J. BatjBS and W.H. Nleuwenhuljs. p. em. 1. Natural gas--Geology--Netherlands. 2. Petroleu.--Geology -Netherlands. I. Rondeel. H. E. II. Batjes. D. A. J. III. Nl euwenhu 1 jS. W. H. TN897.N4G46 1996 553.2'85'09492--de20 95-25226 ISBN-13: 978-94-010-6541-2 e-ISBN-13: 978-94-009-0121-6 DOl: 10.1007/978-94-009-0121-6 Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands Kluwer Academic Publishers incorporates the publishing programmes of D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands Printed on acid-free paper All rights reserved ©1996 Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 1996 No part of the material protected by this copyright notice may be reproduced or utiHzed in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.