Pterosaur Cladogram 259 Taxa

Total Page:16

File Type:pdf, Size:1020Kb

Pterosaur Cladogram 259 Taxa Pterosaur Cladogram 260 taxa - 183 characters - Peters 2021 Huehuecuetzpalli Macrocnemus BES SC111 Macrocnemus T4822 Macrocnemus T2472 Dinocephalosaurus Jianchangnathus Amotosaurus Sordes 2585 3 Fuyuansaurus Skye Middle Jurassic pterosaur Tanystropheus MSNM BES SC1018 Pterorhynchus Tanystropheus T/2819 Changchengopterus PMOL Langobardisaurus Wukongopterus Tanytrachelos Hongshanopterus Archaeoistiodactylus Cosesaurus Kunpengopterus sinensis Kyrgyzsaurus Kunpengopterus antipollicatus Sharovipteryx Darwinopterus AMNH M8802 Longisquama Darwinopterus modularis ZMNH M 8782 Darwinopterus robustodens 41H111-0309A Bergamodactylus MPUM 6009 Darwinopterus linglongtaensis IVPP V 16049 Raeticodactylus Darwinopterus YH2000 Austriadactylus SMNS 56342 Seazzadactylus Scaphognathus crassirostris Austriadraco BSp 1994 I51 Scaphognathus SMNS 59395 Scaphognathus Maxberg sp. Austriadactylus SC332466 Preondactylus TM 13104 MCSNB 2887 Gmu10157 Caelestiventus BM NHM 42735 Dimorphodon macronyx Peteinosaurus Ex3359 BSp 1986 XV 132 Carniadactylus ELTE V 256-Pester specimen MCSNB 8950 B St 1936 I 50 (n30) Dimorphodon? weintraubi Cycnorhamphus IVPP V13758 embryo Moganopterus Mesadactylus holotype Feilongus Dendrorhynchoides curvidentatus Luopterus = D. mutoudengensis Yixianopterus SMNS 81928 flathead Mimodactylus Discodactylus NJU-57003 Haopterus Vesperopterylus JZMP embryo Anurognathus Boreopterus Sinomacrops Zhenyuanopterus CAG IG 02-81 Hamipterus PIN 2585/4 flightless anurognthid Arthurdactylus Batrachognathus SMNK PAL 3854 Daohugoupterus Ikrandraco Eudimorphodon ranzii Jeholopterus Coloborhynchus spielbergi Arcticodactylus cromptonellus Criorhynchus Ferrodraco Nurhachius BPMC 0204 Campylognathoides HLZ 50 Nurhachius IVPP V-13288 Campylognathoides zitteli SMNS 11879 Istiodactylus Campylognathoides zitteli SMNS 9787 SMNS 1136 PAL Lonchodraco Nesodactylus Ornithocephalus Campylognathoides liasicus CM 11424 SOS4593 SOS4006 Brasileodactylus Ludodactylus Rhamphorhynchus St/Ei 8209 (n28) Guidraco SMNS 81775 Rhamphorhynchus B St 1960 I 470A (n9) Cearadactylus ligabuei Bellubrunnus Painten pterosaur Cearadactylus atrox Rhamphorhynchus MBH unnumbered (n20) Douzhanopterus Liaoningopterus Qinglongopterus STM 19-59 Anhanguera piscator Jianchangopterus Rhamphorhynchus BMNH 37012 (n85) Rhamphorhynchus B St 1959 I 400 (n10) Rhamphorhynchus TM 6924 (n1) Ningchengopterus Rhamphorhynchus B St 1889 XI 1 (n7) Pterodactylus AMNH 1942 Rhamphorhynchus B St 1938 I 503a (n11) Pterodactylus SMF 405 (n37) Rhamphorhynchus ROM 55352 Pterodactylus Tokyo sp. Pterodactylus MBR 3655 R sp Lauer collection Pterodactylus NHMW 1975/1756 Pterodactylus scolapaciceps BSP1937 I 18 (n21) Pterodactylus Lauer collection Rhamphorhynchus AMNH 1943 Pterodactylus BSP AS V 29a Rhamphorhynchus HMNS 1862 Pterodactylus antiquus BSP AS I 739 (n4) Rhamphorhynchus Imhof specimen Luchibang MBR5591.1 Rhamphorhynchus GPIT RE 7321 (n81) Pterodactylus BMMS 7 Rhamphorhynchus NHMW 1998z0077/0001 Pterodactylus longicollum SMNS 56603 Rhamphorhynchus BMNH 37002 (n82) Rhamphorhynchus WDC CSG 255 Rhamphorhynchus BRI 010 BSt 1967 i 276 Rhamphorhynchus TMP2008.41.001 BMNH 42736 Rhamphorhynchus JME SOS 4785 BM aM 4072 Rhamphorhynchus BSPG 1880 II 8 Zittel wing BSt ASXIX3 Rhamphorhynchus HMNS-2 Altmeuhlopterus rhamphastinus Rhamphorhynchus MTM V2008.33.1 Cuspicephalus Rhamphorhynchus WU970001 Germanodactylus JME MOE 12 Eosipterus GMV 2117 Wenupteryx MOZ 3625 Rhamphorhynchus CM 11427 (n59) SMNK PAL 3830 Rhamphorhynchus YPM 1778 (n33) Rhamphorhynchus JME SOS 4009 (n62) Germanodactylus cristatus BSt 1892 IV 1(n61) Elanodactylus Rhamphorhynchus TM6920/21 (n38) Germandactylus SMNK-PAL6592 Rhamphorhynchus SMF R 4128 (n43) B St 1878 VI 1 Rhamphorhynchus TM 6922/6923 (n74) Rhamphorhynchus GPIH MYE 13 (n75) Nemicolopterus Rhamphorhynchus B St 1929 I 69 (n52) Mistralazhdarcho Shenzhoupterus Changchengopterus CYGB-0036 Sinopterus atavismus Orientognathus Noripterus Sordes PIN 2585-25 Dsungaripterus Phobetor Huaxiapterus benxiensis Tupandactylus navigans GP/2E 9266 Huaxiapterus corollatus ZMNH M 8131 Sordes PIN 2470-1 Aathal specimen Cacibuteryx Tupandactylus Dorygnathus Hauff sp. Tapejara Dorygnathus Vienna sp. Huaxiapterus Dorygnathus MBR 1920.16 Sinopterus dongi Sericipterus Caupedactylus Sinopterus liui Dorygnathus SMNS 55886 Tupuxura longicristatus Dorygnathus Up R 156 Tupuxura Goshura sp. Dorygnathus purdoni Thalassodromeus Angustinaripterus St/E1I Eopteranodon MBR 3530 (n40) Aurorazhdarcho? MB.R.3531 JPM 2014-004 [not Gladocephaloides] Eoazhdarcho AMNH 5147 Aurorazhdarcho NMB Sh 110 Gnathosaurus cf. Tupuxuara Elgin 2014 Liaodactylus Ctenochasma elegans (n45) Muzquizopteryx C elegans Lauer collection Nyctosaurus FHSMVP2148 C elegans Fossilenatlas.de204 Nyctosaurus FMNH25026 Nyctosaurus UNSM93000 Gegepterus Leptostomia Pteranodon AMNH 4908 no skull Gladocephaloideus IG-CAGS-08-07 Pteranodon YPM 1179 skull Ctenochasma (n65 B) Pteranodon FHSM 2183 Allkaruen D2514 [not Eosipterus] Pteranodon UUPI R197 Pterodaustro Pteranodon YPM 1177 Pterodaustro embryo Pteranodon KUVP 2212 skull Pteranodon YPM 2594 Pteranodon CMC VP7203 Dorygnathus SMNS51827 Pteranodon FHSM 2851 Dorygnathus SMNS 50164 Pteranodon UNSM 12167 TM 10341 (n1) Pteranodon NMC41 358 Rhamphodactylus BSPG 2011 I 133 Pteranodon UALVP 24238 Beipiaopterus SDUST-V1003 Pteranodon KUVP 27821 Ardeadactylus longicollum Pteranodon FHSM VP339 Forfexopterus Huanhepterus Mesadactylus BYU specimen CM 11 426 (n44) B St 1911 I 31 (n42) SOS2428 (n57) SOS 2179 Jidapterus Chaoyangopterus LPM-R00076 Microtuban Chaoyangopterus holotype Zhejiangopterus Quetzalcoatlus Keresdrakon.
Recommended publications
  • The Wingtips of the Pterosaurs: Anatomy, Aeronautical Function and Palaeogeography, Palaeoclimatology, Palaeoecology Xxx (2015) Xxx Xxx 3 Ecological Implications
    Our reference: PALAEO 7445 P-authorquery-v11 AUTHOR QUERY FORM Journal: PALAEO Please e-mail your responses and any corrections to: Article Number: 7445 E-mail: [email protected] Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. We were unable to process your file(s) fully electronically and have proceeded by Scanning (parts of) your Rekeying (parts of) your article Scanning the article artwork Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof. Location in article Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof Q1 Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact [email protected] immediately prior to returning your corrections. Q2 Please confirm that given names and surnames have been identified correctly.
    [Show full text]
  • Theropod Composition of Early Late Cretaceous Faunas from Central
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items.
    [Show full text]
  • An Evaluation of the Phylogenetic Relationships of the Pterosaurs Among Archosauromorph Reptiles
    Journal of Systematic Palaeontology 5 (4): 465–469 Issued 19 November 2007 doi:10.1017/S1477201907002064 Printed in the United Kingdom C The Natural History Museum An evaluation of the phylogenetic relationships of the pterosaurs among archosauromorph reptiles David W. E. Hone∗ Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK Michael J. Benton Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK SYNOPSIS The phylogenetic position of pterosaurs among the diapsids has long been a contentious issue. Some recent phylogenetic analyses have deepened the controversy by drawing the pterosaurs down the diapsid tree from their generally recognised position as the sister group of the dinosaur- omorphs, to lie close to the base of Archosauria or to be the sister group of the protorosaurs. Critical evaluation of the analyses that produced these results suggests that the orthodox position retains far greater support and no close link can be established between pterosaurs and protorosaurs. KEY WORDS Pterosauria, Prolacertiformes, Archosauria, Archosauromorpha, Ornithodira Contents Introduction 465 Methods and Results 466 Discussion 467 Re-analysis of Bennett (1996) 467 Re-analysis of Peters (2000) 467 Conclusions 469 Acknowledgements 469 References 469 Introduction tained). Muller¨ (2003, 2004) also suggested that the prolacer- tiforms were not a valid clade, with Trilophosaurus splitting The basal archosaurs and their phylogenetic positions relative his two prolacertiform taxa (Prolacerta and Tanystropheus). to one another within the larger clade Archosauromorpha The analysis performed by Senter (2004) also found the pro- have been a source of controversy among palaeontologists lacertiforms to be paraphyletic, although here he removed the for decades.
    [Show full text]
  • Premaxillary Crest Variation Within the Wukongopteridae (Reptilia, Pterosauria) and Comments on Cranial Structures in Pterosaurs
    Anais da Academia Brasileira de Ciências (2017) 89(1): 119-130 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160742 www.scielo.br/aabc Premaxillary crest variation within the Wukongopteridae (Reptilia, Pterosauria) and comments on cranial structures in pterosaurs XIN CHENG1,2, SHUNXING JIANG1, XIAOLIN WANG1,3 and ALEXANDER W.A. KELLNER2 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, P.O. Box 643, 100044, Beijing, China 2Laboratory of Systematics and Taphonomy of Fossil Vertebrates, Department of Geology and Paleontology, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil 3University of Chinese Academy of Sciences, 100049, Beijing, China Manuscript received on October 28, 2016; accepted for publication on January 9, 2017 ABSTRACT Cranial crests show considerable variation within the Pterosauria, a group of flying reptiles that developed powered flight. This includes the Wukongopteridae, a clade of non-pterodactyloids, where the presence or absence of such head structures, allied with variation in the pelvic canal, have been regarded as evidence for sexual dimorphism. Here we discuss the cranial crest variation within wukongopterids and briefly report on a new specimen (IVPP V 17957). We also show that there is no significant variation in the anatomy of the pelvis of crested and crestless specimens. We further revisit the discussion regarding the function of cranial structures in pterosaurs and argue that they cannot be dismissed a priori as a valuable tool for species recognition.
    [Show full text]
  • A Reexamination of Four Prolacertiforms \Tith Implications for Pterosaur Phylogenesis
    Rìvista Italiana di Paleontologia e Stratigrafia Dicembre 2000 I--r4-""l*-I-."-''* 1 A REEXAMINATION OF FOUR PROLACERTIFORMS \TITH IMPLICATIONS FOR PTEROSAUR PHYLOGENESIS DAVID PETERS ReceìterJ October 23, 1999; accepted October 20, 200A Kqt uorcls: Pterosauria, Prolacertiiormes (Reprilia, Diapsida), Traditionally the answer has been rhat prerosaurs Phyìogeny, Cladisric an:ìy.is. are archosaurs (Romer 1956); the sister group of the Riassunto . Tradizionalmente gli prerosauri venir.ano considerati Dinosauria, ScleromochÌus a.nd Lagosuclcws/Maraswchus come appartenenti agli Archosaurifomes e molti specìalistì contempo_ (Benton 1985, 1990, 1999; Padian 1984; Gauthter 1984, ranei considerano gli pterosauri quali sisrer groups di Lagosuchus, 1986; Sereno 1991, 1994; Kellner 1996); or perhaps Schleromochlus e dei Dinosauria. La nuova analisi filogenerica qui pro- archosauriformes close posta merte in discussione queste affinirà jn quanto tutte le presunte to prorerosuchids and eryrhro- sinapomorfie che collegherebbero gli Pterosauria con gli Archosauri_ suchids (Bennett 1996a), chiefly because prerosaurs formes o con gli pterosaurìa, Ornìthodira mancano in realtà negli have a prominent anrorbiral fenestra and a suite of other oppure sono condivise anche da alcuni taxa di prolacertiformi. ll archosaur-like characrers almosr entirely recente riesame degli olotipi dt confined to the Cosesaurus a,Liceps, Longisquama ìnsig_ hind nis e di Sharovipteryx mìrabi/ìs suggeriscono che molti caratteri potreb- limb (Bennert 1996a). Although Benton (1982, bero venire interpretati in maniera diversa rispetto alle precedenti L984) initially indicated that the prerosauria are descrìzioni. I risultati di molteplici analisì cladistjche suggeriscono che archosauromorphs and the sister-group ro all other questi tre prolacertìformi enigmatici, uniramente a Langobardìsawrws, archosauromorphs, later work (Benton 1985, 1.990, recentemente descritto, costituirebbero i sister taxa degli prerosauri, in base ad un insieme di sinapomorfie di nuova identificazione.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Pterosaurs Flight in the Age of Dinosaurs Now Open 2 News at the Museum 3
    Member Magazine Spring 2014 Vol. 39 No. 2 Pterosaurs Flight in the Age of Dinosaurs now open 2 News at the Museum 3 From the After an unseasonably cold, snowy winter, will work to identify items from your collection, More than 540,000 Marine Fossils the Museum is pleased to offer a number of while also displaying intriguing specimens from President springtime opportunities to awaken the inner the Museum’s own world-renowned collections. Added to Paleontology Collection naturalist in us all. This is the time of year when Of course, fieldwork and collecting have Ellen V. Futter Museum scientists prepare for the summer been hallmarks of the Museum’s work since Collections at a Glance field season as they continue to pursue new the institution’s founding. What has changed, discoveries in their fields. It’s also when Museum however, is technology. With a nod to the many Over nearly 150 years of acquisitions and Members and visitors can learn about their ways that technology is amplifying how scientific fieldwork, the Museum has amassed preeminent own discoveries during the annual Identification investigations are done, this year, ID Day visitors collections that form an irreplaceable record Day in Theodore Roosevelt Memorial Hall. can learn how scientists use digital fabrication of life on Earth. Today, 21st-century tools— Held this year on May 10, Identification Day to aid their research and have a chance to sophisticated imaging techniques, genomic invites visitors to bring their own backyard finds have their own objects scanned and printed on analyses, programs to analyze ever-growing and curios for identification by Museum scientists.
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • An Unusual New Genus of Istiodactylid Pterosaur from China Based on a Near Complete Specimen
    Palaeontologia Electronica palaeo-electronica.org An unusual new genus of istiodactylid pterosaur from China based on a near complete specimen David W. E. Hone, Adam J. Fitch, Feimin Ma, and Xing Xu ABSTRACT A new genus and species of istiodactylid pterosaur, Luchibang xingzhe gen. et sp. nov., from the Lower Cretaceous Yixian Formation of China is erected based on a near complete specimen lacking only the posterior of the skull and the tail. The holotype individual is skeletally immature and already bigger than most istiodactylids suggesting a large wingspan at adult. This is the most complete istiodactylid specimen known to date and provides new information on the anatomy of this group and their putative ecology. The animal is unusual in having postcranial robust and elongate hindlimbs, which marks it as different to other istiodactylids and other pteranodontoids. David W. E. Hone. Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected] Adam J. Fitch. Department of Geosciences, University of Wisconsin-Madison, 1215 West Dayton St, Madison, Wisconsin 53105, USA. [email protected] Feimin Ma. School of the Earth Sciences and Resources, China University of Geosciences, 28 Xueyuan Road, Haidian District, 100083 Beijing, China. [email protected] Xing Xu. Institute of Vertebrate Palaeontology and Palaeoanthropology, Xizhimenwai Dajie 142, 100044 Beijing, China. [email protected] and CAS Center of Excellence in Life and Paleoenvironment, Beijing, 100044, China. Key words: Pterosauria; phylogeny; taxonomy; ecology, new genus, new species Submission: 1 August 2019. Acceptance: 12 February 2020. INTRODUCTION al., 2008; Witton, 2013). While a number of genera have been described, most specimens are highly Istiodactylids are a clade of typically medium- incomplete, and large parts of the postcrania are sized (2-5 m in wingspan), pteranodontoid ptero- poorly known or unknown.
    [Show full text]
  • Is Our Understanding of Santana Group Pterosaur Diversity Biased by Poor Biological and Stratigraphic Control?
    Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control? Felipe L. Pinheiro1 and Taissa Rodrigues2 1 Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, RS, Brazil 2 Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil ABSTRACT Background. Anhanguerids comprise an important clade of pterosaurs, mostly known from dozens of three-dimensionally preserved specimens recovered from the Lower Cretaceous Romualdo Formation (northeastern Brazil). They are remarkably diverse in this sedimentary unit, with eight named species, six of them belonging to the genus Anhanguera. However, such diversity is likely overestimated, as these species have been historically diagnosed based on subtle differences, mainly based on the shape and position of the cranial crest. In spite of that, recently discovered pterosaur taxa represented by large numbers of individuals, including juveniles and adults, as well as presumed males and females, have crests of sizes and shapes that are either ontogenetically variable or sexually dimorphic. Methods. We describe in detail the skull of one of the most complete specimens referred to Anhanguera, AMNH 22555, and use it as a case study to review the diversity of anhanguerids from the Romualdo Formation. In order to accomplish that, a geometric morphometric analysis was performed to assess size-dependent characters with respect to the premaxillary crest in the 12 most complete skulls bearing crests that are referred in, or related to, this clade, almost all of them analyzed first hand. Results. Geometric morphometric regression of shape on centroid size was highly Submitted 4 January 2017 statistically significant (p D 0:0091) and showed that allometry accounts for 25.7% Accepted 8 April 2017 Published 4 May 2017 of total shape variation between skulls of different centroid sizes.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • ABSTRACTS BOOK Proof 03
    1st – 15th December ! 1st International Meeting of Early-stage Researchers in Paleontology / XIV Encuentro de Jóvenes Investigadores en Paleontología st (1December IMERP 1-stXIV-15th EJIP), 2018 BOOK OF ABSTRACTS Palaeontology in the virtual era 4 1st – 15th December ! Ist Palaeontological Virtual Congress. Book of abstracts. Palaeontology in a virtual era. From an original idea of Vicente D. Crespo. Published by Vicente D. Crespo, Esther Manzanares, Rafael Marquina-Blasco, Maite Suñer, José Luis Herráiz, Arturo Gamonal, Fernando Antonio M. Arnal, Humberto G. Ferrón, Francesc Gascó and Carlos Martínez-Pérez. Layout: Maite Suñer. Conference logo: Hugo Salais. ISBN: 978-84-09-07386-3 5 1st – 15th December ! Palaeontology in the virtual era BOOK OF ABSTRACTS 6 4 PRESENTATION The 1st Palaeontological Virtual Congress (1st PVC) is just the natural consequence of the evolution of our surrounding world, with the emergence of new technologies that allow a wide range of communication possibilities. Within this context, the 1st PVC represents the frst attempt in palaeontology to take advantage of these new possibilites being the frst international palaeontology congress developed in a virtual environment. This online congress is pioneer in palaeontology, offering an exclusively virtual-developed environment to researchers all around the globe. The simplicity of this new format, giving international projection to the palaeontological research carried out by groups with limited economic resources (expensive registration fees, travel, accomodation and maintenance expenses), is one of our main achievements. This new format combines the benefts of traditional meetings (i.e., providing a forum for discussion, including guest lectures, feld trips or the production of an abstract book) with the advantages of the online platforms, which allow to reach a high number of researchers along the world, promoting the participation of palaeontologists from developing countries.
    [Show full text]