The Wingtips of the Pterosaurs: Anatomy, Aeronautical Function and Ecological Implications Hone, DWE; Van Rooijen, MK; Habib, MB

Total Page:16

File Type:pdf, Size:1020Kb

The Wingtips of the Pterosaurs: Anatomy, Aeronautical Function and Ecological Implications Hone, DWE; Van Rooijen, MK; Habib, MB CORE Metadata, citation and similar papers at core.ac.uk Provided by Queen Mary Research Online The wingtips of the pterosaurs: Anatomy, aeronautical function and ecological implications Hone, DWE; Van Rooijen, MK; Habib, MB doi:10.1016/j.palaeo.2015.08.046 For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/10947 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Our reference: PALAEO 7445 P-authorquery-v11 AUTHOR QUERY FORM Journal: PALAEO Please e-mail your responses and any corrections to: Article Number: 7445 E-mail: [email protected] Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. We were unable to process your file(s) fully electronically and have proceeded by Scanning (parts of) your Rekeying (parts of) your article Scanning the article artwork Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof. Location in article Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof Q1 Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact [email protected] immediately prior to returning your corrections. Q2 Please confirm that given names and surnames have been identified correctly. Q3 The citation "Witton 2013, p180" has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary. Q4 Uncited reference: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Thank you. Please check this box if you have no corrections to make to the PDF file. □ Thank you for your assistance. Page 1 of 1 PALAEO-07445; No of Pages 1 Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2015) xxx Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo 1 Highlights – 2 The wingtips of the pterosaurs: Anatomy, aeronautical function and Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2015) xxx xxx 3 ecological implications 4 D.W.E. Honea,⁎, M.K. Van Rooijenb,M.B.Habibc 5 6 a School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK 7 b 210 Collins Street, Hobart, TAS, Australia. 8 c Cell and Neurobiology, Keck School of Medicine, University of Southern CA, Los Angeles, USA 9 • Many pterosaurs possessed curved distal wing phalanges. 10 • Curvature will affect the flight performance of the wing. 11 • High curvature is linked to flight in cluttered environments or over open oceans. 12 • Potential taphonomic distortion limits interpretation. 13 UNCORRECTED PROOF http://dx.doi.org/10.1016/j.palaeo.2015.08.046 0031-0182/© 2015 Published by Elsevier B.V. Please cite this article as: Hone, D.W.E., et al., The wingtips of the pterosaurs: Anatomy, aeronautical function and ecological implications, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2015), http://dx.doi.org/10.1016/j.palaeo.2015.08.046 PALAEO-07445; No of Pages 9 Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo 1Q1 The wingtips of the pterosaurs: Anatomy, aeronautical function and 2 ecological implications a, b c 3Q2 D.W.E. Hone ⁎, M.K. Van Rooijen , M.B. Habib 4 a School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK 5 b 210 Collins Street, Hobart, TAS, Australia. 6 c Cell and Neurobiology, Keck School of Medicine, University of Southern CA, Los Angeles, USA 7 8 article info abstract 9 Article history: The leading edge and shape of the pterosaur wing is constrained by the skeleton. Although it has long been 20 10 Received 13 July 2015 known that at least some pterosaurs had posteriorly curved distal wing phalanges, affecting the shape of the 21 11 Received in revised form 28 August 2015 wingtip, this has been little studied despite that this may have profound effects on flight performance. Here 22 12 Accepted 29 August 2015 we examine the evidence for curved wingtips in pterosaurs and evaluate the possible aerodynamic and aeronau- 23 13 Available online xxxx tical effects. Curved wingtips are shown to be common in both pterosaurs likely to have inhabited terrestrial en- 24 vironments, and those which were strongly pelagic. The recently described genus Bellubrunnus provides new 25 14 Keywords: fl fi 26 15 Pterosauria anatomical novelty for pterosaurs having anteriorly directed wingtips and thus likely had a different ight pro le 16 Flight to all previously known pterosaurs. 27 1728 Wing © 2015 Published by Elsevier B.V. 18 Mesozoic 19 Membrane 293032 31 33 1. Introduction Thus, unlike fossil birds, for example (where feathers of different 56 shapes, sizes and distributions could potentially produce profoundly 57 34 From almost the very start of scientific research into pterosaurs, they different wing planforms from the same, or at least a very similar, skel- 58 35 were recognized as volant animals where the main wing was formed of eton), the extent and shape of the pterosaur wing can be largely deter- 59 36 a membrane that was anchored onto the massively enlarged fourth fin- mined by the preserved skeletal elements and the absence of preserved 60 37 ger of the hand (Wellnhofer, 2008). Although the function of the ptero- soft tissues are less critical. 61 38 saur wing as a flight apparatus have long been apparent, the exact One aspect of the pterosaur wing has, however, been almost entirely 62 39 structure of the wing and how it may have performed has been the sub- overlooked in assessments of their flight capabilities — the shape of the 63 40 ject of much research and scientific debate. Despite recent advances in wingtip. This aspect of the wing has important implications for how the 64 41 pterosaur research (Hone, 2012), the work to date on pterosaur flight wing will function. Different wingtip shapes will affect stall thresholds, 65 42 remains relatively limited in scope. Our understanding of, and research vortex shedding efficiency, and gust load alleviation, among other 66 43 into, pterosaur flight has been limited by a lack of clear understanding of factors (Vogel, 2003; Pennycuick, 2008). That pterosaurs present a vari- 67 44 their flight apparatus (Middleton and English, 2014). ety of different morphological shapes to their wingtips as seen in the 68 45 Numerous studies have examined the possible flight characteristics different levels of curvature to the distal phalanx, attests to potential dif- 69 46 and ecology of the pterosaurs with regards to wing shape (e.g. ferences in flight performance and differing morphological adaptations 70 47 Hazelhurst and Rayner, 1992; McGowan and Dyke, 2007) and perfor- to optimize their flight apparatus to an ecological role. 71 48 mance (e.g. Pennycuick, 1988; Chatterjee and Templin, 2004; Habib, Here we survey the available information on the variety of shapes for 72 49 2008; Witton and Habib, 2010; Palmer, 2011) but only in relatively re- pterosaur wingtips. Using aeronautical theory and comparisons to ex- 73 50 cent years have new specimensUNCORRECTED and new reviews established a better tant vertebrate flPROOFiers, we hypothesize the likely effects of these differing 74 51 understanding of the detailed soft tissue structure of the wing (e.g. shapes on performance and therefore ecology. Special consideration is 75 52 Frey et al., 2003) and its integration with the body (Elgin et al., 2011). given to the unusual pterosaur Bellubrunnus and its anteriorly directed 76 53 Although there were likely some differences between various pterosaur wingtips — a feature apparently unique among volant vertebrates. 77 54 wing constructions, the evidence suggests that overall they were con- 55 servative in shape and structure (Dyke et al., 2006; Elgin et al., 2011). Institutional abbreviations 78 79 ⁎ Corresponding author. BSPG, (formerly BSP) Bayerische Staatssamlung für Paläontologie, E-mail address: [email protected] (D.W.E. Hone). Munich, Germany; CM, Carnegie Museum, Pittsburgh, Pennsylvania, 80 http://dx.doi.org/10.1016/j.palaeo.2015.08.046 0031-0182/© 2015 Published by Elsevier B.V. Please cite this article as: Hone, D.W.E., et al., The wingtips of the pterosaurs: Anatomy, aeronautical function and ecological implications, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2015), http://dx.doi.org/10.1016/j.palaeo.2015.08.046 2 D.W.E. Hone et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2015) xxx–xxx 81 USA; GMV, Geological Museum of China, Beijing, China; IVPP, Institute but other information is rarely available (Fig. 1). Although a good num- 113 82 of Vertebrate Paleontology and Paleoanthropology, Beijing, China; ber of pterosaur specimens are well preserved in three dimensions, dis- 114 83 OXFUM, (formerly J) Oxford University Museum of Natural History, Ox- tal phalanges are rarely preserved and descriptions are uncommon.
Recommended publications
  • The Wingtips of the Pterosaurs: Anatomy, Aeronautical Function and Palaeogeography, Palaeoclimatology, Palaeoecology Xxx (2015) Xxx Xxx 3 Ecological Implications
    Our reference: PALAEO 7445 P-authorquery-v11 AUTHOR QUERY FORM Journal: PALAEO Please e-mail your responses and any corrections to: Article Number: 7445 E-mail: [email protected] Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. We were unable to process your file(s) fully electronically and have proceeded by Scanning (parts of) your Rekeying (parts of) your article Scanning the article artwork Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof. Location in article Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof Q1 Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact [email protected] immediately prior to returning your corrections. Q2 Please confirm that given names and surnames have been identified correctly.
    [Show full text]
  • Theropod Composition of Early Late Cretaceous Faunas from Central
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items.
    [Show full text]
  • Griffith Park Pterosaurs and Sordes Pilosus,Griffith
    Griffith Park Pterosaurs and Sordes Pilosus The Sordes pilosus has been tied to both sightings, in 2013, near Griffith Park: March 3rd and May 13th. The more striking survey results were from the first sighting, near the Colorado Street bridge for the Interstate-5, and just a little southeast of the Los Angeles Zoo. From the thirty-five silhouette images of pterosaurs, birds, and bats, the anonymous eyewitness chose only one: the Sordes pilosus. She did mention that the head was larger than what she saw in the silhouette image. That March 3rd sighting was also noteworthy for the number of flying creatures: three. Only about 1% of sightings involve more than two apparent pterosaurs, according to the data I compiled late in 2012. Also noteworthy for this sighting is the clarity of the tail observation. The eyewitness clear about those long thin tails that ended with a structure that I associate with the Rhamphorhynchoid tail flange. From the data compiled late in 2012, 28.5% of all the sighting include reference to that tail structure. The second sighting, on May 13th, was by Devin Rhodriquez, about 1.5 miles south of the first one. In this case, the eyewitness was so focused on the head that she did not notice the presence or absence of a tail on the flying creature. She was sure about the absence of feathers, but was open-minded in questioning the possibility that she had observed a pterosaur. Rhodriquez was given the same survey form as the first eyewitness; she chose six images:Sordes pilosus, Campylognathoides, Dimorphodon, Peteinosaurus, Scaphognathus, and Quetzalcoatlus.
    [Show full text]
  • On Two Pterosaur Humeri from the Tendaguru Beds (Upper Jurassic, Tanzania)
    “main” — 2009/10/20 — 22:40 — page 813 — #1 Anais da Academia Brasileira de Ciências (2009) 81(4): 813-818 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On two pterosaur humeri from the Tendaguru beds (Upper Jurassic, Tanzania) FABIANA R. COSTA and ALEXANDER W.A. KELLNER Museu Nacional, Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia Quinta da Boa Vista s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brasil Manuscript received on August 17, 2009; accepted for publication on September 30, 2009; contributed by ALEXANDER W.A. KELLNER* ABSTRACT Jurassic African pterosaur remains are exceptionally rare and only known from the Tendaguru deposits, Upper Jurassic, Tanzania. Here we describe two right humeri of Tendaguru pterosaurs from the Humboldt University of Berlin: specimens MB.R. 2828 (cast MN 6661-V) and MB.R. 2833 (cast MN 6666-V). MB.R. 2828 consists of a three- dimensionally preserved proximal portion. The combination of the morphological features of the deltopectoral crest not observed in other pterosaurs suggests that this specimen belongs to a new dsungaripteroid taxon. MB.R. 2833 is nearly complete, and because of a long and round proximally placed deltopectoral crest it could be referred to the Archaeopterodactyloidea. It is the smallest pterosaur from Africa and one of the smallest flying reptiles ever recorded. These specimens confirm the importance of the Tendaguru deposits for the Jurassic pterosaur record. This potential, however, has to be fully explored with more field work. Key words: Tendaguru, Tanzania, Africa, Upper Jurassic, Pterosauria. INTRODUCTION in providing isolated remains up to now (Kellner and Mader 1997, Wellnhofer and Buffetaut 1999, Mader Africa shows a great potential for pterosaur material and Kellner 1999).
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • New Information on the Tapejaridae (Pterosauria, Pterodactyloidea) and Discussion of the Relationships of This Clade
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 521-534. Buenos Aires, 30-12-2004 ISSN 0002-7014 New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade Alexander Wilhelm Armin KELLNER1 Abstract. A phylogenetic analysis indicates that the Tapejaridae is a monophyletic group of pterodactyloid pterosaurs, diagnosed by the following synapomorphies: premaxillary sagittal crest that starts at the anterior tip of the premaxilla and extends posteriorly after the occipital region, large nasoantorbital fenestra that reaches over 45% of the length between premaxilla and squamosal, lacrimal process of the jugal thin, distinct small pear- shaped orbit with lower portion narrow, and broad tubercle at the ventroposterior margin of the coracoid. Several cranial and postcranial characters indicate that the Tapejaridae are well nested within the Tapejaroidea, in sister group relationship with the Azhdarchidae. A preliminary study of the ingroup relationships within the Tapejaridae shows that Tupuxuara is more closely related to Thalassodromeus relative to Tapejara. At present tape- jarid remains have been found in the following deposits: Crato and Romualdo members of the Santana Formation (Aptian-Albian), Araripe Basin, Brazil; Jiufotang Formation (Aptian), Jehol Group of western Liaoning, China; and in the redbeds (Cenomanian) of the Kem Kem region, Morocco. An incomplete skull found in the Javelina Formation (Maastrichtian), Texas also shows several tapejarid features and might be a member of this clade. Although information is still limited, the present distribution of the Tapejaridae indicates that this clade of pterosaurs was not exclusive of Gondwana, and was more widespread than previously known. Resumen. NUEVA INFORMACIÓN SOBRE LOS TAPEJARIDAE (PTEROSAURIA, PTERODACTYLOIDEA) Y DISCUSIÓN SOBRE LAS RELACIONES DE ESTE CLADO.
    [Show full text]
  • Recent Progress in the Study of Pterosaurs from China
    BCAS Vol.24 No.2 2010 Recent Progress in the Study of Pterosaurs from China WANG Xiaolin1*, JIANG Shunxing1, MENG Xi1 and CHENG Xin1,2 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China terosaurs are the earliest vertebrates known to be in the study of pterosaurs from China. able to fly in the sky. They existed from the Late PTriassic to the end of the Cretaceous (about 220 to 65 The smallest, swallow-sized arboreal million years ago), when the land was ruled by another kind pterosaur of reptile—dinosaurs. Pterosaurs consist of the long-tailed Rhamphorhynchoidea and the short-tailed Pterodactyloidea. Can you imagine a pterosaur as tiny as a swallow? It The former is a basal group and the latter is more derived. did exist about 120 million years ago. Despite representing Before the 1990s, there was sporadic pterosaur record an immature individual, Nemicolopterus crypticus (Wang in China. Young Chung-chien (C. C. Young), the doyen of et al., 2008) is neither a hatching nor a newborn based on Chinese vertebrate paleontology, reported the first Chinese the ossification of the skeleton. With a wingspan of 25 cm, pterosaur bones from Laiyang of Shandong Province in it is only slightly bigger than a newborn from the Solnhofen 1958. Later, a number of pterosaurs were described such Limestone, which has a wingspan of 18 mm. This makes it as Dsungaripterus weii, Noripterus complicidens from the smallest pterosaur so far known in the world.
    [Show full text]
  • Pterosaur Cladogram 233 Taxa
    Pterosaur Cladogram 233 taxa - 184 characters - Peters 2017 78 Jianchangnathus Huehuecuetzpalli Sordes 2585 3 Macrocnemus BES SC111 79 96 Macrocnemus T4822 Pterorhynchus Macrocnemus T2472 67 100 Changchengopterus PMOL Dinocephalosaurus 89 Wukongopterus Amotosaurus 98 89 95 Archaeoistiodactylus Fuyuansaurus 82 97 Kunpengopterus 95 100 Tanystropheus MSNM BES SC1018 Darwinopterus AMNH M8802 Tanystropheus T/2819 81 97 Darwinopterus modularis ZMNH M 8782 82 Langobardisaurus 97 59 Darwinopterus robustodens 41H111-0309A Tanytrachelos 100 Darwinopterus linglongtaensis IVPP V 16049 Darwinopterus YH2000 89 Cosesaurus 100 Sharovipteryx Longisquama Scaphognathus crassirostris 100 62 Scaphognathus SMNS 59395 Bergamodactylus MPUM 6009 Scaphognathus Maxberg sp. 99 Raeticodactylus 97 Austriadactylus SMNS 56342 83 TM 13104 Austriadactylus SC332466 79 Gmu10157 98 BM NHM 42735 77 Preondactylus 100 100 BSp 1986 XV 132 94 MCSNB 2887 ELTE V 256-Pester specimen Dimorphodon macronyx 78 97 95 99 B St 1936 I 50 (n30) Peteinosaurus Ex3359 Cycnorhamphus 94 Carniadactylus 97 99 99 Moganopterus 93 MCSNB 8950 Feilongus 91 74 Dimorphodon? weintraubi 91 71 IVPP V13758 embryo Yixianopterus Mesadactylus holotype 100 77 JZMP embryo 96 100 Haopterus Dendrorhynchoides Boreopterus 96 73 88 97 JZMP-04-07-3 Zhenyuanopterus SMNS 81928 flathead 100 80 98 Hamipterus 97 Anurognathus Arthurdactylus 69 81 CAG IG 02-81 SMNK PAL 3854 95 PIN 2585/4 flightless anurognthid 86 Ikrandraco 87 Batrachognathus 98 98 79 Coloborhynchus spielbergi 89 Daohugoupterus Criorhynchus Jeholopterus 64
    [Show full text]
  • Evolution of Morphological Disparity in Pterosaurs Katherine C
    Journal of Systematic Palaeontology, Vol. 9, Issue 3, September 2011, 337–353 Evolution of morphological disparity in pterosaurs Katherine C. Prentice, Marcello Ruta∗ and Michael J. Benton School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK (Received 9 November 2009; accepted 22 October 2010; printed 15 September 2011) Pterosaurs were important flying vertebrates for most of the Mesozoic, from the Late Triassic to the end of the Cretaceous (225–65 Ma). They varied enormously through time in overall size (with wing spans from about 250 mm to about 12 m), and in features of their cranial and postcranial skeletons. Comparisons of disparity based on discrete cladistic characters show that the basal paraphyletic rhamphorhynchoids (Triassic–Early Cretaceous) occupied a distinct, and relatively small, region of morphospace compared to the derived pterodactyloids (Late Jurassic–Late Cretaceous). This separation is unexpected, especially in view of common constraints on anatomy caused by the requirements of flight. Pterodactyloid disparity shifted through time, with different, small portions of morphospace occupied in the Late Jurassic and Late Cretaceous, and a much larger portion in the Early Cretaceous. This explosion in disparity after 100 Ma of evolution is matched by the highest diversity of the clade: evidently, pterosaurs express a rather ‘top heavy’ clade shape, and this is reflected in delayed morphological evolution, again an unexpected finding. The expansion of disparity among pterodactyloids was comparable across subclades: pairwise comparisons among the four pterodactyloid superfamilies show that, for the most part, these clades display significant morphological separation, except in the case of Dsungaripteroidea and Azhdarchoidea.
    [Show full text]
  • Early Ageing and Alzheimer's Pterosaurs Shows That the Holotype Is One of the Best-Preserved Individuals in Exis­ SIR - Mattson Et Ai
    SCIENTIFIC CORRESPONDENCE process was advanced to the point that it ton corresponds almost exactly to that Sharov'sl plate 4. Impressions of the flight had become detached. In the photographs exhibited by complete, undisturbed exam­ membrane, the posterior boundary of (Fig. la of ref. 2), neither wing membrane ples of Rhamphorhynchus, from the Upper which is evident in Sharov'sl plate 5, Fig. clearly indicates where it was attached to Jurassic Solnhofen limestonelO. However, la, show that the right cheiropatagium the leg, although illustrationsl.2 of the the evidence for soft tissues, especially the remained intact and did not undergo any right wing show an imprint identical in extent and structure of the wing mem­ post-mortem transport. The wings occupy shape and position to that of the left wing. branes, is much clearer in Sordes. The wing almost identical positions, as Sharov This observation may be suspect because, membranes of Solnhofen pterosaurs are correctly showedl, but the outline of the 3 as reconstructed here, the left wing may preserved as impressions , ,9,10, but even right cheiropatagium is more difficult to have originally attached near the knee. the best examples can be interpreted in a trace in photographs because of the I can accept that a membrane may have variety of ways3,4.11. The decomposition of patchy preservation of the black, mineral­ spanned from the lateral digits to either Sordes was halted at an earlier stage than ized tissues in this area. side of the tail (it would not impede in Solnhofen pterosaurs: extensive tracts Peters' reconstruction also fails to terrestrial locomotion), but I question of black, mineralized soft tissues8 pick out explain the unusual morphology and 2 how a membrane spanning the legs and impressions left by the wing membranes.
    [Show full text]
  • The Taxonomy and Systematics of Parapsicephalus Purdoni (Reptilia
    The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K. Michael O’Sullivan1 and David M. Martill2 1,2School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, United Kingdom, PO1 3QL *Corresponding author: [email protected] Keywords: Pterosauria, Parapsicephalus, United Kingdom, taxonomy, Lower Jurassic, Toarcian. Abstract The Lower Jurassic (Toarcian) pterosaur Parapsicephalus purdoni (Newton, 1888) from the Whitby Mudstone Formation of North Yorkshire is known from a three-dimensionally preserved skull with brain cast. Since Newton’s original description, its taxonomic status has been contentious. Several cladistic studies have placed it within either Dimorphodontidae or Rhamphorhynchidae. Some investigators have suggested that it is a junior synonym of the Toarcian pterosaur Dorygnathus from the Posidonia Shale of south-western Germany. The holotype skull (GSM 3166) is redescribed and its taxonomic status re-evaluated. Several apomorphies place it suggest it belongs in the Rhamphorhynchidae while autapomorphies of the palate and jugal distinguish Parapsicephalus from Dorygnathus, supporting the continued separation of the two genera. 1. Introduction The Lower Jurassic marine strata of the United Kingdom yield a diverse assemblage of reptilian taxa (Owen, 1881), including ichthyosaurs, plesiosaurs, marine crocodiles and, more rarely, pterosaurs. While Lower Jurassic pterosaurs are best known from the Liassic strata of Dorset (Buckland, 1829; Benton and Spencer, 1995), one of the best preserved examples is a three-dimensional near-complete skull (GSM 3166, figs. 1, 2) from the Toarcian (~182 ma) Whitby Mudstone Formation of Loftus, Yorkshire. Identified as the holotype of Parapsicephalus purdoni by Newton, 1888, it is deposited in the British Geological Survey (BGS) at Keyworth, Nottinghamshire.
    [Show full text]