Pterosaur Cladogram 233 Taxa

Total Page:16

File Type:pdf, Size:1020Kb

Pterosaur Cladogram 233 Taxa Pterosaur Cladogram 233 taxa - 184 characters - Peters 2017 78 Jianchangnathus Huehuecuetzpalli Sordes 2585 3 Macrocnemus BES SC111 79 96 Macrocnemus T4822 Pterorhynchus Macrocnemus T2472 67 100 Changchengopterus PMOL Dinocephalosaurus 89 Wukongopterus Amotosaurus 98 89 95 Archaeoistiodactylus Fuyuansaurus 82 97 Kunpengopterus 95 100 Tanystropheus MSNM BES SC1018 Darwinopterus AMNH M8802 Tanystropheus T/2819 81 97 Darwinopterus modularis ZMNH M 8782 82 Langobardisaurus 97 59 Darwinopterus robustodens 41H111-0309A Tanytrachelos 100 Darwinopterus linglongtaensis IVPP V 16049 Darwinopterus YH2000 89 Cosesaurus 100 Sharovipteryx Longisquama Scaphognathus crassirostris 100 62 Scaphognathus SMNS 59395 Bergamodactylus MPUM 6009 Scaphognathus Maxberg sp. 99 Raeticodactylus 97 Austriadactylus SMNS 56342 83 TM 13104 Austriadactylus SC332466 79 Gmu10157 98 BM NHM 42735 77 Preondactylus 100 100 BSp 1986 XV 132 94 MCSNB 2887 ELTE V 256-Pester specimen Dimorphodon macronyx 78 97 95 99 B St 1936 I 50 (n30) Peteinosaurus Ex3359 Cycnorhamphus 94 Carniadactylus 97 99 99 Moganopterus 93 MCSNB 8950 Feilongus 91 74 Dimorphodon? weintraubi 91 71 IVPP V13758 embryo Yixianopterus Mesadactylus holotype 100 77 JZMP embryo 96 100 Haopterus Dendrorhynchoides Boreopterus 96 73 88 97 JZMP-04-07-3 Zhenyuanopterus SMNS 81928 flathead 100 80 98 Hamipterus 97 Anurognathus Arthurdactylus 69 81 CAG IG 02-81 SMNK PAL 3854 95 PIN 2585/4 flightless anurognthid 86 Ikrandraco 87 Batrachognathus 98 98 79 Coloborhynchus spielbergi 89 Daohugoupterus Criorhynchus Jeholopterus 64 100 87 Istiodactylus 74 64 SMNS 1136 PAL 82 Eudimorphodon ranzii Nurhachius Eudimorphodon cromptonellus 89 Brasileodactylus Eudimorphodon BSp 1994 98 Ludodactylus 91 Guidraco Campylognathoides HLZ 50 Cearadactylus ligabuei 89 Cearadactylus atrox 99 100 Campylognathoides zitteli SMNS 11879 76 Campylognathoides zitteli SMNS 9787 94 Liaoningopterus 92 Anhanguera piscator 74 Nesodactylus Campylognathoides liasicus CM 11424 82 97 Ornithocephalus 97 SOS4593 87 Rhamphorhynchus St/Ei 8209 (n28) 100 SOS4006 85 Rhamphorhynchus B St 1960 I 470A (n9) 100 Bellubrunnus SMNS 81775 100 89 Rhamphorhynchus MBH unnumbered (n20) 87 Qinglongopterus Douzhanopterus 86 72 Jianchangopterus 86 Rhamphorhynchus BMNH 37012 (n85) 90 Rhamphorhynchus B St 1959 I 400 (n10) Painten private pteroaur 84 51 56 Ningchengopterus 100 Rhamphorhynchus TM 6924 (n1) 95 82 Pterodactylus AMNH 1942 Rhamphorhynchus B St 1889 XI 1 (n7) 69 Rhamphorhynchus B St 1938 I 503a (n11) 97 Pterodactylus SMF 405 (n37) Pterodactylus NHMW 1975/1756 69 Rhamphorhynchus ROM 55352 94 94 Pterodactylus scolapaciceps BSP1937 I 18 (n21) 85 Rhamphorhynchus Imhof specimen 100 Rhamphorhynchus GPIT RE 7321 (n81) 83 Pterodactylus BSP AS V 29a Pterodactylus antiquus BSP AS I 739 (n4) 94 99 Rhamphorhynchus NHMW 1998z0077/0001 90 Rhamphorhynchus BMNH 37002 (n82) 90 Pterodactylus BMMS 7 81 51 100 Rhamphorhynchus WDC CSG 255 Pterodactylus longicollum SMNS 56603 Rhamphorhynchus BRI 010 69 BSt 1967 i 276 98 Rhamphorhynchus TMP2008.41.001 53 Rhamphorhynchus JME SOS 4785 BMNH 42736 82 68 BM aM 4072 98 Rhamphorhynchus MTM V2008.33.1 93 BSt ASXIX3 56 Rhamphorhynchus WU970001 94 G rhamphastinus 81 Rhamphorhynchus CM 11427 (n59) 98 Rhamphorhynchus YPM 1778 (n33) 80 German JME MOE 12 78 Rhamphorhynchus JME SOS 4009 (n62) Eosipterus GMV 2117 Rhamphorhynchus TM6920/21 (n38) 98 81 German cristatus BSt 1892 IV 1(n61) 91 Rhamphorhynchus SMF R 4128 (n43) 65 Wenupteryx MOZ 3625 72 SMNK PAL 3830 85 Rhamphorhynchus TM 6922/6923 (n74) 56 97 Rhamphorhynchus GPIH MYE 13 (n75) Rhamphorhynchus B St 1929 I 69 (n52) 75 Phobetor 79 Dsungaripterus Noripterus Changchengopterus CYGB-0036 Nemicolopterus 60 Shenzhoupterus 94 Orientognathus 94 Sordes PIN 2585-25 Sinopterus 87 83 83 Huaxiapterus Tapejara 60 86 100 Tupandactylus 73 Sinopterus liui 73 54 88 Tupuxura longicristatus Sordes PIN 2470-1 90 Tupuxura Goshura sp. Cacibuteryx Thalassodromeus 55 Dorygnathus Hauff sp. Dorygnathus Vienna sp. 84 Elanodactylus 71 Dorygnathus MBR 1920.16 60 98 German SMNK-PAL6592 75 Sericipterus 96 German NMING F15005 Dorygnathus SMNS 55886 68 Eopteranodon 76 Dorygnathus Up R 156 Aurorazhdarcho 95 71 57 Dorygnathus purdoni Eoazhdarcho 96 Angustinaripterus 82 97 St/E1I 100 B St 1878 VI 1 94 MBR 3530 (n40) Muzquizopteryx 100 JPM 2014-004 [not Gladocephaloides] 66 96 Nyctosaurus FHSMVP21 74 Nyctosaurus FMNH25026 73 AMNH 5147 Nyctosaurus UNSM93000 100 81 Gnathosaurus 56 Liaodactylus Pteranodon YPM 1179 94 Ctenochasma elegans (n45) 88 Pteranodon FHSM 2183 88 88 70 Gegepterus Pteranodon UUPI R197 Gladocephaloideus IG-CAGS-08-07 77 85 Pteranodon YPM 1177 Ctenochasma (n65 B) 65 Pteranodon KUVP 2212 skull 85 <50 Allkaruen 87 50 Pteranodon YPM 2594 89 D2514 [not Eosipterus] 87 Pteranodon CMC VP7203 99 Pterodaustro 75 Pteranodon FHSM 2851 Pterodaustro embryo Pteranodon UNSM 12167 55 55 Pteranodon NMC41 358 Pteranodon UALVP 24238 Dorygnathus SMNS51827 73 86 100 Pteranodon KUVP 27821 Dorygnathus SMNS 50164 Pteranodon FHSM VP339 99 TM 10341 (n1) 99 Rhamphodactylus BSPG 2011 I 133 100 Beipiaopterus 60 74 Ardeadactylus longicollum 89 Forfexopterus 90 99 Huanhepterus Mesadactylus BYU specimen CM 11 426 (n44) 87 B St 1911 I 31 (n42) 57 85 SOS2428 (n57) SOS 2179 90 Jidapterus 95 Chaoyangopterus LPM-R00076 70 Microtuban 97 Chaoyangopterus holotype 100 Zhejiangopterus Quetzalcoatlus.
Recommended publications
  • The Wingtips of the Pterosaurs: Anatomy, Aeronautical Function and Palaeogeography, Palaeoclimatology, Palaeoecology Xxx (2015) Xxx Xxx 3 Ecological Implications
    Our reference: PALAEO 7445 P-authorquery-v11 AUTHOR QUERY FORM Journal: PALAEO Please e-mail your responses and any corrections to: Article Number: 7445 E-mail: [email protected] Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. We were unable to process your file(s) fully electronically and have proceeded by Scanning (parts of) your Rekeying (parts of) your article Scanning the article artwork Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof. Location in article Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof Q1 Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact [email protected] immediately prior to returning your corrections. Q2 Please confirm that given names and surnames have been identified correctly.
    [Show full text]
  • Theropod Composition of Early Late Cretaceous Faunas from Central
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items.
    [Show full text]
  • Griffith Park Pterosaurs and Sordes Pilosus,Griffith
    Griffith Park Pterosaurs and Sordes Pilosus The Sordes pilosus has been tied to both sightings, in 2013, near Griffith Park: March 3rd and May 13th. The more striking survey results were from the first sighting, near the Colorado Street bridge for the Interstate-5, and just a little southeast of the Los Angeles Zoo. From the thirty-five silhouette images of pterosaurs, birds, and bats, the anonymous eyewitness chose only one: the Sordes pilosus. She did mention that the head was larger than what she saw in the silhouette image. That March 3rd sighting was also noteworthy for the number of flying creatures: three. Only about 1% of sightings involve more than two apparent pterosaurs, according to the data I compiled late in 2012. Also noteworthy for this sighting is the clarity of the tail observation. The eyewitness clear about those long thin tails that ended with a structure that I associate with the Rhamphorhynchoid tail flange. From the data compiled late in 2012, 28.5% of all the sighting include reference to that tail structure. The second sighting, on May 13th, was by Devin Rhodriquez, about 1.5 miles south of the first one. In this case, the eyewitness was so focused on the head that she did not notice the presence or absence of a tail on the flying creature. She was sure about the absence of feathers, but was open-minded in questioning the possibility that she had observed a pterosaur. Rhodriquez was given the same survey form as the first eyewitness; she chose six images:Sordes pilosus, Campylognathoides, Dimorphodon, Peteinosaurus, Scaphognathus, and Quetzalcoatlus.
    [Show full text]
  • SG125 035-140 Veldmeijer 16-01-2007 07:46 Pagina 35
    SG125 035-140 veldmeijer 16-01-2007 07:46 Pagina 35 Description of Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. André J. Veldmeijer Veldmeijer, A.J. Coloborhynchus spielbergi sp. nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. Scripta Geologica 125: 35-139, 22 figs., 16 pls; Leiden, May 2003. André J. Veldmeijer, Mezquitalaan 23, 1064 NS Amsterdam, The Netherlands ([email protected]). A new species of pterosaur, Coloborhynchus spielbergi sp. nov. (Pterodactyloidea), from the Romualdo Member (Albian) of the Santana Formation is described. The type consists of the skull, mandible and many of the post-cranial bones. The specimen displays a high degree of co-ossification indicating that the animal was an adult and likely quite old when it died. The wingspan is reconstructed at nearly 6 m. Among the characteristic features are a large anteriorly positioned premaxillary sagittal crest and a smaller, also anteriorly positioned dentary sagittal crest, a flat anterior aspect of the skull from which two teeth project and a ventrally fused pelvis. Comments on Brazilian pterosaurs are made in connec- tion with the classificiation of the Leiden specimen. Keywords –– Pterosaur, Coloborhynchus, Santana Formation, Lower Cretaceous, Brazil. Contents Introduction ..................................................................................................................................................... 35 Material .............................................................................................................................................................
    [Show full text]
  • 7.2.1. Introduction
    Veldmeijer Cretaceous, toothed pterosaurs from Brazil. A reappraisal 1. Introduction Campos & Kellner (1985b) related that references to flying reptiles from Brazil (not from the Araripe Basin) were made as early as the 19th century, but the first find from Chapada do Araripe was described as late as the 1970s (Price, 1971, post–cranial remains of Araripesaurus castilhoi). Wellnhofer (1977) published the description of a phalanx of a wing finger of a pterosaur from the Santana Formation and named it Araripedactylus dehmi. Since then, much has been published on the pterosaurs from Brazil, and there has been an increasing interest in the material from this area, resulting in an increase in scientific interest in pterosaurs in general. The plateau of the Araripe Basin, in northeast Brazil on the boundaries of Piaui, Ceará and Pernambuco (figure 1.1) was already famous for its well preserved fossils, escpacially fish (e.g. Maisey, 1991), long before the area became the most important source of Cretaceous pterosaur fossils. At present, it is the most important area for Cretaceous pterosaurs globally, although an increasing number of finds are reported from China (e.g. Lü & Ji, 2005; Wang & Lü, 2001 and Wang & Zhou, 2003). Some of the Brazilian material is severely compacted (Crato Formatin; Frey & Martill, 1994; Frey et al., 2003a, b; Sayão & Kellner, 2000) and preserved on a laminated limestone comparable to that of Solnhofen. (The type locality of most, if not all, pterosaur fossils from the Araripe Basin is uncertain, because no systematic, scientically based excavations or even surveys have been done in this area.
    [Show full text]
  • On Two Pterosaur Humeri from the Tendaguru Beds (Upper Jurassic, Tanzania)
    “main” — 2009/10/20 — 22:40 — page 813 — #1 Anais da Academia Brasileira de Ciências (2009) 81(4): 813-818 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On two pterosaur humeri from the Tendaguru beds (Upper Jurassic, Tanzania) FABIANA R. COSTA and ALEXANDER W.A. KELLNER Museu Nacional, Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia Quinta da Boa Vista s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brasil Manuscript received on August 17, 2009; accepted for publication on September 30, 2009; contributed by ALEXANDER W.A. KELLNER* ABSTRACT Jurassic African pterosaur remains are exceptionally rare and only known from the Tendaguru deposits, Upper Jurassic, Tanzania. Here we describe two right humeri of Tendaguru pterosaurs from the Humboldt University of Berlin: specimens MB.R. 2828 (cast MN 6661-V) and MB.R. 2833 (cast MN 6666-V). MB.R. 2828 consists of a three- dimensionally preserved proximal portion. The combination of the morphological features of the deltopectoral crest not observed in other pterosaurs suggests that this specimen belongs to a new dsungaripteroid taxon. MB.R. 2833 is nearly complete, and because of a long and round proximally placed deltopectoral crest it could be referred to the Archaeopterodactyloidea. It is the smallest pterosaur from Africa and one of the smallest flying reptiles ever recorded. These specimens confirm the importance of the Tendaguru deposits for the Jurassic pterosaur record. This potential, however, has to be fully explored with more field work. Key words: Tendaguru, Tanzania, Africa, Upper Jurassic, Pterosauria. INTRODUCTION in providing isolated remains up to now (Kellner and Mader 1997, Wellnhofer and Buffetaut 1999, Mader Africa shows a great potential for pterosaur material and Kellner 1999).
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Is Our Understanding of Santana Group Pterosaur Diversity Biased by Poor Biological and Stratigraphic Control?
    Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control? Felipe L. Pinheiro1 and Taissa Rodrigues2 1 Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, RS, Brazil 2 Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil ABSTRACT Background. Anhanguerids comprise an important clade of pterosaurs, mostly known from dozens of three-dimensionally preserved specimens recovered from the Lower Cretaceous Romualdo Formation (northeastern Brazil). They are remarkably diverse in this sedimentary unit, with eight named species, six of them belonging to the genus Anhanguera. However, such diversity is likely overestimated, as these species have been historically diagnosed based on subtle differences, mainly based on the shape and position of the cranial crest. In spite of that, recently discovered pterosaur taxa represented by large numbers of individuals, including juveniles and adults, as well as presumed males and females, have crests of sizes and shapes that are either ontogenetically variable or sexually dimorphic. Methods. We describe in detail the skull of one of the most complete specimens referred to Anhanguera, AMNH 22555, and use it as a case study to review the diversity of anhanguerids from the Romualdo Formation. In order to accomplish that, a geometric morphometric analysis was performed to assess size-dependent characters with respect to the premaxillary crest in the 12 most complete skulls bearing crests that are referred in, or related to, this clade, almost all of them analyzed first hand. Results. Geometric morphometric regression of shape on centroid size was highly Submitted 4 January 2017 statistically significant (p D 0:0091) and showed that allometry accounts for 25.7% Accepted 8 April 2017 Published 4 May 2017 of total shape variation between skulls of different centroid sizes.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Review of the Pterodactyloid Pterosaur Coloborhynchus 219
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • New Information on the Tapejaridae (Pterosauria, Pterodactyloidea) and Discussion of the Relationships of This Clade
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 521-534. Buenos Aires, 30-12-2004 ISSN 0002-7014 New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade Alexander Wilhelm Armin KELLNER1 Abstract. A phylogenetic analysis indicates that the Tapejaridae is a monophyletic group of pterodactyloid pterosaurs, diagnosed by the following synapomorphies: premaxillary sagittal crest that starts at the anterior tip of the premaxilla and extends posteriorly after the occipital region, large nasoantorbital fenestra that reaches over 45% of the length between premaxilla and squamosal, lacrimal process of the jugal thin, distinct small pear- shaped orbit with lower portion narrow, and broad tubercle at the ventroposterior margin of the coracoid. Several cranial and postcranial characters indicate that the Tapejaridae are well nested within the Tapejaroidea, in sister group relationship with the Azhdarchidae. A preliminary study of the ingroup relationships within the Tapejaridae shows that Tupuxuara is more closely related to Thalassodromeus relative to Tapejara. At present tape- jarid remains have been found in the following deposits: Crato and Romualdo members of the Santana Formation (Aptian-Albian), Araripe Basin, Brazil; Jiufotang Formation (Aptian), Jehol Group of western Liaoning, China; and in the redbeds (Cenomanian) of the Kem Kem region, Morocco. An incomplete skull found in the Javelina Formation (Maastrichtian), Texas also shows several tapejarid features and might be a member of this clade. Although information is still limited, the present distribution of the Tapejaridae indicates that this clade of pterosaurs was not exclusive of Gondwana, and was more widespread than previously known. Resumen. NUEVA INFORMACIÓN SOBRE LOS TAPEJARIDAE (PTEROSAURIA, PTERODACTYLOIDEA) Y DISCUSIÓN SOBRE LAS RELACIONES DE ESTE CLADO.
    [Show full text]
  • On the Osteology of Tapejara Wellnhoferi KELLNER 1989 and the first Occurrence of a Multiple Specimen Assemblage from the Santana Formation, Araripe Basin, NE-Brazil
    Swiss J Palaeontol (2011) 130:277–296 DOI 10.1007/s13358-011-0024-5 On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil Kristina Eck • Ross A. Elgin • Eberhard Frey Received: 28 May 2011 / Accepted: 9 August 2011 / Published online: 26 August 2011 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2011 Abstract The postcranial elements of two similar sized ocular lobes indicate that Tapejara possessed both excel- and juvenile individuals, along with a partial skull, are lent balancing and visual systems as a consequence of its attributed to the Early Cretaceous pterosaur Tapejara aerial lifestyle. wellnhoferi. The remains, recovered from a single con- cretion of the Romualdo Member, Santana Formation, Keywords Brazil Á Lower Cretaceous Á Santana NE-Brazil, represent the first account of multiple specimens Formation Á Pterosauria Á Tapejaridae Á Osteology having settled together and allow for a complete review of postcranial osteology in tapejarid pterosaurs. A comparison Abbreviations of long bone morphometrics indicates that all specimens BSP Bayerische Staatammlung fu¨r Pala¨ontologie und attributed to the Tapejaridae for which these elements are historische Geologie, Munich, Germany known (i.e. Huaxiapterus, Sinopterus, Tapejara) display D Dalian Natural History Museum, Dalian, China similar bivariate ratios, suggesting that Chinese and Bra- IMNH Iwaki City Museum of Coal and Fossils, Iwaki, zilian taxa must have exhibited similar growth patterns. An Japan unusual pneumatic configuration, whereby the humerus is IVPP Institute for Vertebrate Palaeontology and pierced by both dorsally and ventrally located foramina, is Palaeoanthropology Beijing, P.
    [Show full text]