Use Style: Paper Title
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tamarack Area Facilities Task 3
TAMARACK AREA FACILITIES TASK 3 - PHASE 2 REPORT Historical Archive Research and Mapping From Hubbell Beach through Tamarack City C&H Historic Properties of Torch Lake Prepared for: MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY Reclamation and Redevelopment Division 55195 US Highway 41 Calumet, Michigan 49913 Prepared by: MICHIGAN TECHNOLOGICAL UNIVERSITY Carol MacLennan, Principal Investigator With John Baeten, Emma Schwaiger, Dan Schneider, Brendan Pelto Industrial Archaeology and Heritage Program Department of Social Sciences October 2014 Contract No. Y4110 1 TABLE OF CONTENTS Section 1: Introduction …………………………………………………………………………………….5 Section 2: Narratives and Timelines ……………….……………...………………………………11 Ahmeek Mill Facilities1 - Narrative & Timeline ...……………...………………………………….12 Tamarack Reclamation Plant2 – Narrative & Timeline ………….……………………………..23 Lake Chemical Co. – Narrative & Timeline …………………………………………………………..46 Building Narratives ………………………………………………………………………………………..…55 Ahmeek Stamp Mill ………………………………………………..……………………………….58 Ahmeek Pump House ...……………………………………………………………………………60 Ahmeek Power House ……………………………………………………………………………..62 Ahmeek Transformer House ……………………………………………………………………64 Ahmeek Boiler House …...…………………………………………………………………………65 Tamarack Regrinding Plant ……………………………………………………………………..67 Tamarack Electric Sub-Station ...………………………………………………………………69 Tamarack Classifying Plant ..……………………………………………………………………70 Tamarack Flotation Plant ………………………………………………………………………..72 Tamarack Leaching Plant ...……………………………………………………………………...74 Tamarack Stamp -
Crushing Machines
Scholars' Mine Bachelors Theses Student Theses and Dissertations 1895 Crushing machines Samuel J. Gormly Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Gormly, Samuel J., "Crushing machines" (1895). Bachelors Theses. 348. https://scholarsmine.mst.edu/bachelors_theses/348 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. CRUSHING MACHINES A THESIS FOR DEGREE OF B.S. IN MINE ENGINEERING Samuel J Gormly. Crushing Machines. S. J. Gormly. 1. Crushing Machines Crushing Machines may be divided into: Crushers, Rolls, and Pulverizers. Ore as it comes from the mine is usually in larger lumps which require breaking up preparatory to the subsequent treatment it may receive. For this purpose mechanical means must be employed, and the following pages are intended as a rational treatment of the most approved methods, in ore crushing at the present day. If the material to be treated is coarse it is first put through a common jaw breaker, shown in Fig 1. PI. I In case the product is to be treated in rolls a jaw crusher is preferred to the breaker on account of giving a more uniform sized product, and therefore better prepared for the rolls. For all other crushing the breaker is preferred because of its greater 2. -
Correspondence
Proceedings.] DISCUSSION ON GOLD-QUARTZREDUCTION. 177 sufficient to pay when the material was properly worked, they Mr. Giles. could see how imperative it was that themachines for reducing the ore should be of the most perfect description. It was remarkable to observe that the discussion had been maintained in many cases by young members; that perhaps proved that mining, though as old as the hills, was still endowed with vitality. For looking at what had taken place at Fort Salisbury, where pre-historic build- ings hadbeen discovered which wereassumed to be connected with the gold-mining industry of the days of King Solomon, they ought to be able to continue that industry, and to make it pay. There was good reason todoubt whether the meansadopted for ex- tracting gold in those days were anythinglike as perfect as those of the present day. In view of the large income derived from gold-mining, a great many consi.derations would be suggested by the Paper, which would be well worth attention in the future. Correspondence. Mr. G. ATTWOODwas much struck with the care and general Mr. Attwood. accuracy of the Author’s statements. The subject was a difficult one to handle on account of the numerous inventions which had been made during the last thirty yearsfor the purpose of improv- ing gold-quartz reduction; nearly all the inventions having some good points but failing in the main. The result of practice had reduced the machines most extensively employed to gravitation and steam-stamps, the Erom or similar rolls, and the Blake jaw- crusher. -
Vertical Roller Mill for Raw Materials
Vertical roller mill for raw Application process Item materials Raw material process Grinding raw materials needs lots of energy. Tube mills had been used for grinding, Background but the energy efficiency level was lower. Therefore, the introduction of highly efficient grinding equipment was anticipated. The vertical roller mill has high energy efficiency and the installation space is smaller compared with tube mills. These days, the vertical roller mills have been widely adopted. A)Structure (1) The rollers are hydraulically pressed against a disc table and the feed is ground between the rollers and the disc table. (2) The classifier is housed above the rollers. B)Feature (1) The power consumption level for grinding is lower than that of tube (ball) mill. (2) The remaining time of raw materials in this type of mill is much shorter than that in tube (ball) mill; therefore, the crushing process and mixing process became more harmonized and this contributes to quality control. (3) The installation space is smaller and this Descriptions leads to lower noise level. (4) This type of mill can crush materials which are too large to be fed into the tube (ball) Fig.1 Vertical roller mill mill. (5) Ground materials are dried by the flue gas from the kiln. Fig.2 Schematic process flow of vertical roller mill for grinding of raw materials Vertical roller mills are adopted in 20 cement plants (44 mills) in Japan. Table Energy saving effect of the vertical roller mill Vertical roller Ball mill Effect(%) mill 100 ~ ~ Results Production % 160 180 60 -
Mechanochemical and Size Reduction Machines for Biorefining
molecules Review Mechanochemical and Size Reduction Machines for Biorefining Igor Lomovskiy , Aleksey Bychkov , Oleg Lomovsky and Tatiana Skripkina * Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, 630090 Novosibirsk, Russia; [email protected] (I.L.); [email protected] (A.B.); [email protected] (O.L.) * Correspondence: [email protected] Academic Editor: Rafał Łukasik Received: 16 October 2020; Accepted: 11 November 2020; Published: 16 November 2020 Abstract: In recent years, we have witnessed an increasing interest in the application of mechanochemical methods for processing materials in biomass refining techniques. Grinding and mechanical pretreatment are very popular methods utilized to enhance the reactivity of polymers and plant raw materials; however, the choice of devices and their modes of action is often performed through trial and error. An inadequate choice of equipment often results in inefficient grinding, low reactivity of the product, excess energy expenditure, and significant wear of the equipment. In the present review, modern equipment employing various types of mechanical impacts, which show the highest promise for mechanochemical pretreatment of plant raw materials, is examined and compared—disc mills, attritors and bead mills, ball mills, planetary mills, vibration and vibrocentrifugal mills, roller and centrifugal roller mills, extruders, hammer mills, knife mills, pin mills, disintegrators, and jet mills. The properly chosen type of mechanochemical activation (and equipment) allows an energetically and economically sound enhancement of the reactivity of solid-phase polymers by increasing the effective surface area accessible to reagents, reducing the amount of crystalline regions and the diffusion coefficient, disordering the supramolecular structure of the material, and mechanochemically reacting with the target substances. -
Modeling and Simulation of Vertical Roller Mill Using Population Balance Model
Physicochem. Probl. Miner. Process., 56(1), 2020, 24-33 Physicochemical Problems of Mineral Processing ISSN 1643-1049 http://www.journalssystem.com/ppmp © Wroclaw University of Science and Technology Received July 22, 2019; reviewed; accepted September 12, 2019 Modeling and simulation of vertical roller mill using population balance model Rasoul Fatahi, Kianoush Barani Department of Mining Engineering, Lorestan University, Khorramabad, Iran Corresponding author: [email protected] (Kianoush Barani) Abstract: There are few studies concerning the process simulation of vertical roller mills (VRMs). In this research work, the application of population balance model for simulation of a VRM in a cement clinker grinding circuit was investigated. The residence time distribution (RTD) was measured, and the tank-in-series and Weller models were employed to describe the residence time distribution. Two sampling surveys were carried out on the VRM circuit. The data from the first survey were used for model calibration, and the specific breakage rates were back-calculated. The model parameters obtained were used for simulation of the second survey, and validation of the model. The results showed that the clinker particle spent a short time inside the VRM and the mean residence time is about 67s. The tanks-in series model compares to Weller model was more proper to describe the residence time distributions in the VRM. The simulation results showed that the specific breakage rates increased with increasing particle size. However, the particles larger than 25.4 mm particles sizes are too large to be properly nipped by master rollers. Finally, it can be concluded that the grinding process of the VRM is very well-predictable with the population balance model. -
A Historic Context for the Archaeology of Industrial Labor in the State Of
A Historic Context for the Archaeology of Industrial Labor in the State of Maryland Robert C. Chidester Masters of Applied Anthropology Program Department of Anthropology University of Maryland at College Park Submitted to the Maryland Historical Trust In Partial Fulfillment of a Maryland Heritage Internship Grant December 2003 Revised Version, March 2004 Abstract This report presents a historic context for industrial labor in the state of Maryland. Industrial labor is defined as the socially-governed activity of transforming nature for the purpose of the efficient processing and manufacture of commercial goods. Labor’s heritage as represented in the Maryland Inventory of Historic Properties, the Maryland Archaeological Site Records, and selected secondary sources is surveyed following the geographical and chronological guidelines presented in the Maryland Comprehensive Historic Preservation Plan (Weissman 1986). Types of industry and labor, class relations, the labor movement and the social and domestic lives of industrial laborers are all considered; additionally, industrialization in Maryland is linked to other important themes in the state’s history. An overview of the archaeology of industrial labor is given for each of Maryland’s 23 counties and Baltimore City, emphasizing important excavations. An analysis of the state of labor archaeology in Maryland is given, along with suggestions for important research themes that have been thus far unaddressed or poorly addressed by Maryland archaeologists. i Table of Contents Abstract.....................................................................................i -
Mineral Processing Milling
MINERAL PROCESSING MILLING Introduction Milling, sometimes also known as fine grinding, pulverising or comminution, is the process of reducing materials to a powder of fine or very fine size. It is distinct from crushing or granulation, which involves size reduction to a rock, pebble or grain size. Milling is used to produce a variety of materials which either have end uses themselves or are raw materials or additives used in the manufacture of other products. A wide range of mills has been developed for particular applications. Some types of mills can be used to grind a large variety of materials whereas others are used for dykrt6rdeyk 1 certain specific grinding requirements. This brief aims to present the factors to consider when choosing particular grinding applications and to give an overview of the equipment which is available. Material grinding is quite often an integral part of an industrial process, whether carried out on a large or small scale and in some cases the grinding mill may be the single most costly item for the production operation. Installing a grinding mill which is suitable for the Figure 1: Swing hammer mill being used for lime milling purpose would be one of the main in Malawi. ©Practical Action. requirements for cost-effective and trouble-free material processing if a grinding stage is involved. Abrasives Petroleum products Animal products Pharmaceuticals Brewing industry Plastics Chemical Printing ink Confectionery Rubber Food processing Textiles Fuel preparation Sintering Metal power Refractory materials for -
Harford County Mills (June 2, 2006)
Harford County Mills (June 2, 2006) ABERDEEN IRON FOUNDRY ( ) An advertisement in the Aegis of August 6, 1869, offered the Aberdeen Iron Foundry and Machine Shop of which T. B. C. Stump was proprietor. ADAIR AND BUCHANAN FORGE (5) Robert Adair and Archibald Buchanan took out a writ of ad quod damnum for 100 acres "on a draught of Water of Deer Creek near a place called the Mine or old fields," for a forge, October 6, 1761. This inquiry was taken on Deer Creek on George Ridgdon's Spring Branch near a place called “the Mine Old Fields." The land was valued at £ 5 present damages, " but was already in possession of Adair and Buchanan by a Caution and Survey. The grant was made August 27, 1762. Chancery Records, Liber 9:105, MSA. Spring Branch is also called Mine Branch or Body Run. It enters Deer Creek from the north. Mine Old Fields is roughly east of Nursery Road; west of Mine Run, and between Minefield and Cherry Hill, MHM, 50:15. Also, OHH, p. 143. ALDERSONS TANNERY (4) Abel Alderson's son, Thomas, conducted a tannery, c. l84_, near Jarrettsvi11e, Directory, p. 297. The l880 census listed James B. Alderson, tanner, with $2500 capital, 2 employees, and production of 300 skins annually worth $600 by horse power. ALLEN BONE MILL (S) See Stafford Mill. ALLEN MILL (2) See Union Mill. AMERICAN POTTERY SUPPLY FURNACE (5) In 1902, the American Pottery Supply Co. of Baltimore bought from Joseph T. and Florida F. Deckman 245 acres between Sulphur Run and Scarboro Road, bounded on the south by Deer Creek, HCLR WSF 104:1S3. -
Grinding Process Within Vertical Roller Mills: Experiment and Simulation
A 刷,, H B-k··e α 川 ιFLB 蚓崽drB2ddp-∞ m 司·····川 mDe--·· ,,, CJ MINING m +L e SCIENCEAND TECHNOLOGY ELSEVIER Mining Science and Technology 19 (2009) 0097-0101 www.elsevier.comllocate/jcumt Grinding process within vertical roller mills: experiment and simulation 1 1 WANG Jian-huai , CHEN Qing-ru , KUANG Ya-li1 , LYNCHAP, ZHUO Jin-wu 1Sc hool 01 Chemical Engineering and Technology, China University 01 Mining & Technology, Xuzhou, Jiangsu 221116, China 2Juius Kruttschnitt Mineral Research Centre, Queensland Universi秽 , Brisbane, Australia Abstract: Basedon screening analysis, laser size analysis, grindability and rigidity tests of samples collected on line from a cement and a power plant, a simulation of the grinding process in vertical roller mills was carried out. The simulation calculation used a breakage function, B. The results indicate that the breakage function, B, and the selection function, S, in the form of a matrix, can be used to express the probability of the material breaking during the grinding process. This allows the size distribution of 也e product to be numerically estimated. The simulation results also show that the simulated size distribution curves fit the actual ex perimental product curves quite well. The model provides a good starting point for simulation of the grinding process. Further re search is needed to determine the proper breakage function and the matrix value of the selection function. Keywords: vertical roller mill; grinding; simulation 1 Introduction fired power plants and cement plants used 6.16% of all nationwide industrial power-consumption (see Grinding is a highly energy consuming process. Table 1). Statistics also show 也at the grinding energy Considerable coal, cement raw materials and clinkers, consumption in China was 50% higher than what metal and non-metal minerals, and the like, are would be expected at the world class, advanced 2 crushed every year in China for power generation, level[I- l.