An Economic and Pest Management Evaluation of the Herbicide Dacthal in California Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

An Economic and Pest Management Evaluation of the Herbicide Dacthal in California Agriculture An Economic and Pest Management Evaluation of the Herbicide Dacthal in California Agriculture Prepared for California Department of Food and Agriculture Office of Pesticide Consultation and Analysis Rachael Goodhue1 Steven Fennimore2 Daniel Tregeagle3 Tor Tolhurst4 Hanlin Wei4 1Professor and Chair, Department of Agricultural and Resource Economics 2Extension Specialist and Weed Ecophysiologist, Department of Plant Sciences 3Post-Doc, Department of Agricultural and Resource Economics 4PhD Student, Department of Agricultural and Resource Economics University of California, Davis 1 Contents Abstract ......................................................................................................................................7 Introduction................................................................................................................................8 Background...........................................................................................................................10 Dacthal use and Groundwater Protection Areas....................................................................11 Regulatory process................................................................................................................12 Dacthal Use...............................................................................................................................15 Statewide..............................................................................................................................15 Monterey County..................................................................................................................17 Santa Barbara County ...........................................................................................................19 San Luis Obispo County .........................................................................................................21 Frequency of dacthal applications.........................................................................................23 Tank mixes ............................................................................................................................24 Methods ...................................................................................................................................30 Current Herbicide Use on Crops Using Dacthal..........................................................................32 Frequency of applications of multiple herbicides ..................................................................34 IPM Overview ...........................................................................................................................43 Cultural and physical weed control before planting...............................................................43 Cultural and physical control after planting...........................................................................43 Alternative Herbicides...............................................................................................................45 Literature review...................................................................................................................47 Broccoli .............................................................................................................................47 Onion ................................................................................................................................47 Bok Choy ...........................................................................................................................48 Efficacy of potential partial alternatives ................................................................................48 Bensulide ..........................................................................................................................48 Bromoxynil........................................................................................................................48 Clethodim .........................................................................................................................49 Clomazone and clopyralid .................................................................................................49 Dimethenamid-P ...............................................................................................................49 Ethofumesate....................................................................................................................49 Oxyfluorfen .......................................................................................................................49 Napropamide ....................................................................................................................50 2 Pendimethalin...................................................................................................................50 Trifluralin ..........................................................................................................................50 Sulfentrazone....................................................................................................................50 UC IPM Program Spectrum of Control of Weeds by Herbicide: Cole Crops and Onion ...........50 Economic Analysis.....................................................................................................................56 Alternatives selected for economic analysis ..........................................................................56 Pesticide material cost per acre ............................................................................................58 Price..................................................................................................................................59 Application rate.................................................................................................................59 Pesticide material cost per acre.........................................................................................60 Application costs...................................................................................................................61 Weeding costs: hand weeding and cultivation.......................................................................62 Yield losses............................................................................................................................63 note on industry quantity and price ...............................................................................65 Gross revenue losses per acre by crop ..................................................................................65 Changes in net returns per acre by crop................................................................................66 Change in net returns by crop: California ..............................................................................68 Changes in net returns by crop: Monterey, Santa Barbara, and San Luis Obispo counties .....70 Monterey County ..............................................................................................................70 Santa Barbara County........................................................................................................71 San Luis Obispo County .....................................................................................................72 Caveats and limitations.........................................................................................................74 Other Approaches.....................................................................................................................76 Appendix...................................................................................................................................77 Literature Cited.........................................................................................................................97 3 Tables Table 1. Dacthal Use by Pounds Active Ingredient Applied and Acres Treated: 2014-2016 ........16 Table 2. Dacthal Use by County: 2014-2016 ..............................................................................17 Table 3. Dacthal Treatments in Monterey County by Crop and Year: 2014-2016.......................18 Table 4. Dacthal Treatments in Santa Barbara County, by Crop and Year, 2014-2016................21 Table 5. Dacthal Treatments in San Luis Obispo County, by Crop and Year, 2014-2016 .............22 Table 6. Frequency of Dacthal Applications to Fields: 2014-2016, California .............................23 Table 7. Frequency of Dacthal Applications to Fields: 2014-2016, Monterey, Santa Barbara and San Luis Obispo Counties ..........................................................................................................23 Table 8. Frequency of Product Types Used in Mixes with dacthal: 2014-2016, California ..........25 Table 9. Frequency of Product Types Used in Mixes with Dacthal by County and Year: 2014- 2016, Monterey, Santa Barbara and San Luis Obispo Counties..................................................26 Table 10. Common Tank Mixes in Monterey County: 2014-2016...............................................27 Table 11. Common Tank Mixes in Santa Barbara County: 2014-2016 ........................................28 Table 12. Common Tank Mixes in San Luis Obispo County: 2014-2016......................................29 Table 13. Top Herbicide AIs by Acres 2014-2016, Percentages of All Herbicide-treated Acreage, and Main Product: Broccoli, Other
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • July 6, 2020 OPP Docket Environmental Protection Agency Docket Center (EPA/DC), (28221T) 1200 Pennsylvania Ave. NW Washington
    July 6, 2020 OPP Docket Environmental Protection Agency Docket Center (EPA/DC), (28221T) 1200 Pennsylvania Ave. NW Washington, DC 20460-000 Docket ID # EPA-HQ-OPP-2014-0167 Re. Clopyralid, Case Number 7212 Dear Madam/Sir: These comments are submitted on behalf of Beyond Pesticides, Beyond Toxics, Center for Food Safety, Hawai’i Alliance for Progressive Action, Hawai'i SEED, LEAD for Pollinators, Maine Organic Farmers and Gardeners Association, Maryland Pesticide Education Network, Northeast Organic Farming Association—Massachusetts Chapter, Northwest Center for Alternatives to Pesticides, People and Pollinators Action Network, Real Organic Project, Sierra Club, Toxic Free NC, Women’s Voices for the Earth. Founded in 1981 as a national, grassroots, membership organization that represents community-based organizations and a range of people seeking to bridge the interests of consumers, farmers and farmworkers, Beyond Pesticides advances improved protections from pesticides and alternative pest management strategies that reduce or eliminate a reliance on pesticides. Our membership and network span the 50 states and the world. EPA’s proposed interim decision (PID) on the weed killer clopyralid is inadequate to protect property, nontarget plants, and pollinators from exposure to the chemical. Clopyralid poses unreasonable adverse effects that cannot be remedied by EPA’s proposed fixes. It should not be reregistered. Clopyralid has a long history of causing environmental and property damage through drift, runoff, use of treated plant material (such as straw or grass clippings) for mulch or compost, contaminated irrigation water, and urine or manure from animals consuming treated vegetation. Clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) is an herbicide used to control broadleaf weeds on nonresidential lawns and turf, range, pastures, right-of ways and on several crops.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, CLOPYRALID MEA+2,4-D, 07/07/2008
    'f-;) 7 S-O - 'ta- \ ENVIRONMENTAL PROTECTION u.s. EPA Reg, Nwnber: Date of Issuance: AGENCY Office of Pesticide Programs 42750-92 Registration Division (7505P) -- 7 JtJL 2DOB Ariel Rios, Building 1200 Pennsylvania Ave., NW Washington, D.C, 20460 NOTICE OF PESTICIDE: Term of Issuance: _ Registration -X Reregistration Name of Pesticide Product: (under FIFRA, as amended) Clopyralid MEA+ 2,4- D Name and Address of Registrant (include ZIP Code): Albaugh, Inc. 121 NE 18th Street Ankeny, IA 50021 N o~e: C.h~nge,~itiIflb~ljllgl,~i:t1~1i~~J9~~~1?~!iUiC~,fJqnf.th~i.:~G~~t~4j#'qqHriet£i~riw,ii4;tl}is, :' ',' ,,',: " registratio"n ~4stl>e ,s~Drriittedto,aPQjl,~9:~pt~qby 'theRe,gi~ttatipn pivisi()i1 prior t9 ':tI~.~"Qn~~)*~eI , ,~:~~~~r:::~.~:;~~:1~~jJ:r~,2t.edf.~,~.&.~~lt;'~I~\~i,~tfl%~~~i;m)~t~~:;'~~/~~·?~~:,)~·¥'t·.'~~~i,~j~:~:i)~.:,;" ,.".;,' "' On the basis of information furnished by the registrant, the above named pesticide is hereby registered/reregistered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use ifit has been covered by others. This product is reregistered in accordance with FIFRA sec.
    [Show full text]
  • Corn and Soybean Mode of Action Herbicide Chart
    By Premix Corn and Soybean This chart lists premix herbicides alphabetically by their trade names so you can identify the premix’s component herbicides and their respective site of action groups. Refer Herbicide Chart to the Mode of Action chart for more information. Component Repeated use of herbicides with the same Site of Premix Trade Active Action site of action can result in the development of Trade Name ® Name ® Ingredient Group* herbicide-resistant weed populations. Authority First ............... Spartan sulfentrazone 14 FirstRate cloransulam 2 Axiom ........................... Define flufenacet 15 This publication was designed for commercial printing, color shifts may occur on other printers and on-screeen. Sencor metribuzin 5 Basis . ........................... Resolve rimsulfuron 2 Harmony GT thifensulfuron 2 By Mode of Action (effect on plant growth) Bicep II Magnum .......... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 This chart groups herbicides by their modes of action to assist Bicep Lite II Magnum .... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 you in selecting herbicides 1) to maintain greater diversity in Boundary ...................... Dual Magnum s-metolachlor 15 herbicide use and 2) to rotate among herbicides with different Sencor metribuzin 5 Breakfree ATZ ............... Breakfree acetochlor 15 sites of action to delay the development of herbicide resistance. atrazine atrazine 5 Breakfree ATZ Lite ........ Breakfree acetochlor 15 Number of atrazine atrazine 5 resistant weed Buctril + Atrazine ......... Buctril bromoxynil 6 atrazine atrazine 5 species in U.S. Bullet ............................ Micro-Tech alachlor 15 Site of Chemical Active atrazine atrazine 5 Action Product Examples Camix ........................... Callisto mesotrione 28 Group* Site of Action Family Ingredient (Trade Name ®) Dual II Magnum s-metolachlor 15 Lipid Canopy DF ..................
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
    Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor.
    [Show full text]
  • Ecological Risk Assessment for Saflufenacil
    TEXT SEARCHABLE DCOUMENT 2011 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CEMICAL SAFETY AND POLLUTION PREVENTION PC Code: 118203 DP Barcode: 380638 and 381293 Thursday, April 07, 2011 MEMORANDUM SUBJECT: Ecological Risk Assessment for Saflufenacil Section 3 New Chemical Uses as a harvest aid on dry edible beans, dry peas, soybean, oilseeds "sunflower subgroup 20B", oilseeds "cotton subgroup 20C", and oilseeds canola "subgroup 20A". TO: Kathryn Montague, M.S., Product Manager 23 Herbicide Branch Registration Division (RD) (7505P) FROM: ~ Mohammed Ruhman, Ph.D., Agronomist 2 :4- . ""=- ........ 04!tJt! (I neith Sappington, Senior Biologist/Science Adviso~.... Vd- Environmental Risk Branch V O'f/ .../ II Environmental Fate and Effects Division (7507P) THROUGH: Mah Shamim, Ph.D., Branch Chief Environmental Risk Branch VI Environmental Fate and Effects Division (7507P) This ecological risk assessment for saflufenacil new uses is relying on the attached previous assessment (Attachment 1). As shown in the usage summary (Table 1), the single and seasonal rate, for all the crops range from 0.045 to 0.089 lbs a.i/A are within the range application rates used in exposure modeling for the 2009 Section 3 New Chemical Environmental Fate and Ecological Risk Assessment (DP Barcode 349855). Therefore, risk findings determined for the 2009 assessment may be used in the assessment for this submittal. Specifically, the 2009 assessment found no chronic risks to avian and mammalian species at an agricultural use rate 0 0.134 lb a.i.lA. Acute risks were not determined for birds and mammals since saflufenacil was not acutely toxic at the highest doses tested.
    [Show full text]
  • U.S. Geological Survey National Water-Quality Assessment Program
    U.S. Geological Survey National Water-Quality Assessment Program Stream water-quality analytes Major ions and trace elements­schedule 998 (20 constituents) Pesticides ­­schedule 2437 (229 compounds) Alkalinity 1H­1,2,4­Triazole Arsenic 2,3,3­Trichloro­2­propene­1­sulfonic acid (TCPSA) Boron 2,4­D Calcium 2­(1­Hydroxyethyl)­6­methylaniline Chloride 2­[(2­Ethyl­6­methylphenyl)amino]­1­propanol Fluoride 2­Amino­N­isopropylbenzamide Iron 2­Aminobenzimidazole Lithium 2­Chloro­2',6'­diethylacetanilide 2­Chloro­4,6­diamino­s­triazine {CAAT} Magnesium (Didealkylatrazine) pH 2­Chloro­4­isopropylamino­6­amino­s­triazine Potassium 2­Chloro­6­ethylamino­4­amino­s­triazine {CEAT} Total dissolved solids 2­Chloro­N­(2­ethyl­6­methylphenyl)acetamide Selenium 2­Hydroxy­4­isopropylamino­6­amino­s­triazine 2­Hydroxy­4­isopropylamino­6­ethylamino­s­triazin Silica e {OIET} Sodium 2­Hydroxy­6­ethylamino­4­amino­s­triazine Specific conductance 2­Isopropyl­6­methyl­4­pyrimidinol Strontium 3,4­Dichlorophenylurea Sulfate 3­Hydroxycarbofuran Turbidity 3­Phenoxybenzoic acid Vanadium 4­(Hydroxymethyl)pendimethalin 4­Chlorobenzylmethyl sulfoxide Suspended sediment 4­Hydroxy molinate 4­Hydroxychlorothalonil Nutrients­schedule 2430 (18 constituents) 4­Hydroxyhexazinone A Inorganic carbon, suspended Acephate Dissolved inorganic carbon Acetochlor ammonia + organic nitrogen (unfiltered­Kjeldahl) Acetochlor oxanilic acid ammonia + organic nitrogen (filtered­Kjeldahl) Acetochlor sulfonic acid Ammonia as N, filtered Acetochlor sulfynilacetic acid nitrite, filtered Alachlor
    [Show full text]
  • Efficacy of Imazapic/Imazapyr and Other Herbicides in Mixtures for The
    Efficacy of imazapic/imazapyr and other herbicides in mixtures for the control of Digitaria insularis prior to soybean sowing Efectividad de imazapic/imazapyr y otros herbicidas en mezclas para el control de Digitaria insularis en pre-siembra de soya Alfredo Junior Paiola Albrecht1, Leandro Paiola Albrecht1, André Felipe Moreira Silva²*, Romulo Augusto Ramos³, Everson Pedro Zeny³, Juliano Bortoluzzi Lorenzetti4, Maikon Tiago Yamada Danilussi4, and Arthur Arrobas Martins Barroso4 ABSTRACT RESUMEN Herbicide mixtures, use of multiple sites of action, and other Las mezclas entre herbicidas, el uso de múltiples sitios de acción weed management practices are necessary to avoid cases of y otras prácticas de manejo de malezas son necesarias para biotype resistance. The aim of this study was to evaluate the evitar otros casos de resistencia de biotipos. El objetivo de este efficiency of imazapic/imazapyr and other herbicides in mix- estudio fue evaluar la eficiencia de imazapic/imazapyr y otros tures to control Digitaria insularis at burndown before soybean herbicidas en mezclas para controlar Digitaria insularis en la sowing. This field research was conducted in Umuarama, State desecación antes de la siembra de soya. Esta investigación de of Parana (PR), Brazil, in the 2018/19 soybean season. The ex- campo se realizó en Umuarama, Estado de Paraná (PR), Brasil, periment was conducted in a randomized block experimental en la cosecha de soya de 2018/19. El experimento se realizó en design with four replicates and 11 treatments composed of the un diseño experimental de bloques al azar, con cuatro repe- application of glyphosate, clethodim, haloxyfop, imazapic/ ticiones y 11 tratamientos, compuestos por la aplicación de imazapyr, glufosinate, 2,4-dichlorophenoxyacetic acid (2,4-D), glifosato, cletodim, haloxifop, imazapic/imazapir, glufosinato, dicamba, triclopyr, and saflufenacil, in mixtures.
    [Show full text]
  • Post-Emergence Weed Control Options in Tree Nut Orchards
    Post-emergence Weed Control Options in Tree Nut Orchards Marcelo L. Moretti1, Rolando Mejorado1, Seth Watkins1, David Doll2, and Bradley D. Hanson1 1University of California, Davis, Dept. of Plant Sciences,2Cooperative Extension Merced County [email protected] Herbicides are the primary means of vegetation management in tree nut orchards in California. Among registered herbicides, post-emergence (POST) materials, like glyphosate, are the most widely used in tree crops because of low cost and broad weed control spectrum. However, herbicide resistance has compromised the efficacy of POST only herbicide programs in many parts of the state. Most cases of resistance in orchards are glyphosate-resistant hairy fleabane, horseweed, ryegrass, and junglerice. To manage resistant weed species, pre-emergence (PRE) herbicides can be applied during winter before weeds emerge; however, PRE herbicide use can be limited by cost and the need for rainfall to incorporate them. Even when PRE herbicides are used, most orchards will need a POST treatment to control weed escapes and to prepare the orchard for harvest operations. One approach to optimize control of late emerging or glyphosate-resistant weeds is to use alternate herbicides, mixtures, rates, or more appropriate application timing. The objective of this project was to evaluate POST control of hairy fleabane and yellow nutsedge with different herbicides combinations. Methods Field experiments were conducted in a three year-old almond orchard infested with hairy fleabane and yellow nutsedge. The orchard was located in a sandy soil area in Merced County, and irrigated with solid set sprinklers. The area is known to be infested with glyphosate-resistant hairy fleabane.
    [Show full text]
  • MC(' Potential Exposure of Humans to 2
    (MC( FUNDAMENTAL AND APPLIED TOXICOLOGY 1:3 3 9-3 4 6 (1981) Potential Exposure of Humans to 2,4,5-T and TCDD in the Oregon Coast Ranges MICHAEL NEWTON" and LOGAN A. NORRISB "Professor of Forest Ecology, Oregon State University, Corvallis; BChief Research Chemist, USDA Forest Service, Corvallis, Oregon ABSTRACT Potential Exposure of Humans to 2,4,5-T and TCDD in Humans may be exposed to herbicides through drift; inges- the Oregon Coast Ranges. Newton, M. and Norris, L.A. tion of wild and domestic meat, vegetables, and fruit; con- (1981). F.undam. AppL Toxicol. 1:339-346. Research on the sumption of water; and dermal contact while handling the use of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) contami- chemicals, equipment, and treated vegetation. The range of -8 nated with 2.5 X 10 parts 2,3,7,8-tetrachlorodibenzo-p- potential exposure extends from zero, if there is no encounter dioxin (TCDD) in forests of the Oregon Coast Ranges per- with the herbicide, to the worst situation where the person has mits estimates of human exposures for both compounds. encountered the highest levels of water contamination, drift Estimated total exposure of nearby ( ^ 1/8 mile distant) resi- exposure, meat contamination, and dermal exposure simul- dents during the first week after application is 0.0039 mg/kg taneously. We have brought estimates of all sources together of 2,4,5-T for a 70-kg adult. Exposure to TCDD in the same to determine the possible range of total exposure from episode would be 1.9 X 10 b ° mg/kg.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]