A Review of Ecosan Experience in Eastern and Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Ecosan Experience in Eastern and Southern Africa The Water and Sanitation Program January 2005 is an international partnership for improving water and sanitation sector policies, practices, and capacities to serve poor people Field Note Sanitation and Hygiene Series A Review of EcoSan Experience in Eastern and Southern Africa Many governments and agencies in Africa are exploring the role of ecological sanitation, or EcoSan, within their environmental sanitation and hygiene improvement programs. Despite convincing environmental and economic reasons to support this approach, acceptance of the technology has been very limited so far. This field note reviews experience in Eastern Africa and, with less detail, Southern Africa. Introduction The scale of the sanitation crisis in Africa is enormous: 43 percent of the population of Sub Saharan Africa – over 303 million people – had no access to basic sanitation in the year 2000.1 Between 1990 and 2000, the number of people gaining access to improved sanitation failed to keep pace with population growth. The combination of poor progress, population growth, extremely weak economies and sometimes civil strife mean that the MDG targets facing Africa, seem almost insurmountable. This clearly means that ‘business as usual’ is not an option. Many governments and agencies in Africa are exploring the role of ecological sanitation, or EcoSan, within their environmental sanitation and hygiene improvement programs. Despite convincing environmental and economic reasons to support this approach, acceptance of the technology has been very limited so far. This field note reviews experience in Eastern Africa and, with less detail, Southern Africa. The aim is: • to identify as many successful EcoSan projects and programs as possible and to learn from these experiences; and, • to understand why take-up of EcoSan has been so limited, and to use this information to improve future sanitation programs. In its broadest sense, EcoSan ranges from simply planting a tree on a disused A urine-diversion toilet near Mombasa, Kenya. The urine is collected in the plastic container. toilet pit, through to composting human 1 Joint Monitoring Programme for Water Supply and Sanitation, 2004. excreta and re-using the products in 2 ‘Closing the Loop’ refers to the vision of using human excreta (processed in some way) as a fertilizer of agriculture, thereby ‘closing the loop’.2 crops which provide nutrition for humans. 2 A Review of EcoSan Experience in Eastern and Southern Africa The work of the WSP affirms that consultation or choice they are unlikely EcoSan Experience there is a role for a variety of EcoSan to be sustainable. technologies in sanitation improvement in Eastern Africa programs, but this role will vary Correct usage: Some sanitation according to geography, economy, technologies (and especially EcoSan Kenya culture, etc. However, the first priority technologies) are more complicated, continues to be the need to achieve or demanding of the user, than others. EcoSan technology was introduced in health benefits through hygienic Incorrect usage can cause anything Kenya in the late nineties and there are behavior and improved sanitation from a minor inconvenience to a major now about six projects in the country. facilities; environmental and nutritional system failure and/or health hazard. A study commissioned by WSP-AF in benefits can and should follow. This field 2002 found that less than 100 EcoSan note reviews what has been achieved Spontaneous copying: Success toilets had been constructed (a figure to date and identifies some lessons for is demonstrable when there is an that has now marginally increased). future projects. increased demand for a ‘product’, or Most construction costs were when the ‘product’ is replicated without subsidized by NGOs who introduced Measures of Acceptance subsidies or specialist inputs. This level three types of EcoSan toilets. (See Box 1) of acceptance is essential if a new technology is to become widespread in Most households surveyed were not The most important factor in assessing a community. aware of EcoSan technologies and the potential for increased use of any the opportunities offered by excreta sanitation technology is the degree Use in agriculture: EcoSan re-use, especially in soil conditioning of acceptance in a community, as technologies in Africa have not been for improved food production. However, measured by willingness to adopt or widely embraced for improving 70 percent of respondents plant invest in that technology. This field note agriculture. But some local successes foodstuffs - such as bananas - for home explores that concept and examines have made a significant difference to consumption on filled-up pits, and 39 issues that help or hinder acceptance of the promotion of EcoSan and represent percent said they were willing to use EcoSan technology. Four measures of another level of acceptance. excreta as manure in their farms. All acceptance are proposed: • Are the toilets still in use? Box 1: Types of EcoSan Toilets in Kenya • Are they being correctly used? • Are they being copied without Skyloo: a raised toilet with urine diversion and separate collection of urine and external support? faeces in a permanent structure that requires periodic (6-12 months) emptying of the • Are EcoSan products being used in receptacle and transportation to a composting site. agriculture? Arborloo: a portable superstructure with no urine diversion, covering a shallow pit Continued use: Many sanitation that fills in after approximately one year. The superstructure is then moved and a tree projects get substantial subsidies planted in the filled pit. to ‘kick-start’ a campaign and this Fossa Alterna: two permanent pits with a portable superstructure. When one pit is sometimes leads to participation even full the superstructure is moved to the other. The digested contents of the first pit can when people are not fully convinced be safely emptied after a year. of the merits of the technology. Active participation can wane with Fossa Alterna and Arborloos work best when quantities of soil, wood ash and leaves the realization of the technology’s are added periodically to produce a balanced compost. Skyloos require some ash to requirements. When inappropriate dry the faeces and increase pathogen destruction facilities are installed without 3 groups admitted to a lack of knowledge constructed are still in use. Recent the Arborloo is considered affordable on excreta re-use but 20 out of 50 reports indicate renewed interest in this and easy to replicate: it is constructed focus groups acknowledged they had technology, especially in areas with geo- using locally available materials, is eaten chickens fed on human waste. hydrological problems. easy to construct and move (even for Thirty nine percent of respondents said women), and does not need a deep they would be willing to re-use human The Fossa Alterna toilet has been well pit, which is helpful in rocky conditions. waste as manure and 27 percent were received in two pilot areas in Kisumu. At Fruit trees can be grown on abandoned happy to eat fish fed on human waste least 15 toilets are being used in schools pit sites. In addition, as Arborloo toilets nutrients. and public places such as fish landing are shallow, there is less likelihood of sites. A demonstration toilet constructed ground water contamination or collapse In Kisumu region, along Lake Victoria, in a primary school has attracted the during the rainy season. Skyloos were built as an alternative interest of parents who want to copy the technology to pit latrines, especially in design in their homesteads. While it appears that the simplest form locations where the water table is high of EcoSan, the Arborloo, has been and the community relies on shallow The Arborloo toilet has been accepted and replicated it is too early water wells for their water needs. But enthusiastically received in Makueni to tell whether the Fossa Alterna will the Skyloos were not popular in the District (a semi-arid region south east of be emptied and the contents used in pilot area, partly due to cultural issues Nairobi) and the initial 3 demonstration agriculture, or to what extent it will be associated with urine diversion and toilets have been replicated to 57 within copied. The Skyloos were chosen to handling of feces. Acceptance has a year. The health and agricultural deal with adverse local conditions but been slow and only 8 out of 15 toilets benefits are clear to the community, and the high degree of user involvement has discouraged users. Ethiopia Knowledge Attitudes Behavior and Practices studies by UNICEF (1997) and Water Aid (2003) indicate that contact with human faeces is generally unacceptable in Ethiopia. Even constructing 'a house for feces' is low on the domestic agenda, especially among men. Given this cultural resistance it is hardly surprising that less than 400 EcoSan toilets have been constructed. SUDEA (Society for Urban Development in East Africa) is the main promoter of EcoSan in Ethiopia. Since 1998 a number of pilot projects, responsible for over 300 toilets, have been undertaken in partnership with local NGOs in Addis Skyloos in Migosi near Kisumu, Kenya. Ababa, Jimma, Bahir Dar, Hamusit and 4 A Review of EcoSan Experience in Eastern and Southern Africa Harar. Representatives from the Ministry by incorrect use of the urine diversion of Agriculture and Rural Development system, and lack of space and time for recently attended an international urban agriculture. conference on EcoSan and, with donor funds, established four trial Fossa In one densely settled area several Alterna toilets in each of two regions. users preferred people other than themselves to take away the feces, and SUDEA promotes an integrated EcoSan many others had stopped using the system for household sanitation and toilet. Within one block of 100 houses home gardening in which urine is with urine-diversion toilets built for diverted and used as a fertilizer, and families relocated after a fire, 45 percent feces are collected and composted of households were not practicing urban with other organic household waste.
Recommended publications
  • Recode Draft Plumbing Code for Composting and Urine Diversion Toilets
    June 9, 2014 Recode Draft Plumbing Code for Composting and Urine Diversion Toilets Editor Mathew Lippincott recodeoregon.org Collaborators Laura Allen greywateraction.org Mark Buehrer 2020engineering.org Molly Danielsson recodeoregon.org Melora Golden recodeoregon.org Colleen Mitchell 2020engineering.com Kim Nace richearthinstitute.org Glenn Nelson compostingtoilet.com Abe Noe-Hayes richearthinstitute.org David Omick watershedmg.org/soil-stewards John Scarpulla sfwater.org Justification Introduction Water scarcity and pollution concerns are driving Environmental Protection: the adoption of composting and urine diversion Urine diversion can reduce nitrogen in domestic toilet systems in the US and abroad. In the US, wastewater by 80%, and Composting Toilet these systems have been treated unevenly by Systems can reduce household nitrogen by close a patchwork of regulations in Health, Onsite to 90%, both at installed costs of $3-6,000. This is Sanitation, and Building Code departments a higher performance than Alternative Treatment because they do not fit neatly into categories Technologies (ATTs) and sand filters currently designed to guarantee safe sanitary drainage required in many jurisdictions with surface and systems. It is the opinion of this code group that groundwater concerns, and at a fraction of the composting and urine diversion toilets are at a cost. This code brings new, lower cost options for turning point, mature enough to build sound environmental protection to homeowners. regulation around while also being a site of active research and development. Our intent is Innovation: therefore to create code language that provides This code enables the installation of innovative for strict protections on public health while also technologies by creating a code with clear encouraging the growth of domestic industry and inspection points to safeguard public health even innovation in composting and urine diversion in the event of the failure of new or experimental systems.
    [Show full text]
  • Source Separation and Treatment of Anthropogenic Urine
    Source Separation and of Treatment Anthropogenic Urine Infrastructure Water Environment Research Foundation 635 Slaters Lane, Suite G-110 n Alexandria, VA 22314-1177 Phone: 571-384-2100 n Fax: 703-299-0742 n Email: [email protected] www.werf.org WERF Stock No. INFR4SG09b Co-published by IWA Publishing Source Separation and Treatment Alliance House, 12 Caxton Street London SW1H 0QS United Kingdom of Anthropogenic Urine Phone: +44 (0)20 7654 5500 Fax: +44 (0)20 7654 5555 Email: [email protected] Web: www.iwapublishing.co IWAP ISBN: 978-1-78040-005-1/1-78040-005-5 Co-published by Aug 2011 INFR4SG09b SOURCE SEPARATION AND TREATMENT OF ANTHROPOGENIC URINE by: Kimberly LeMonde Fewless Sybil Sharvelle (PI) Larry A. Roesner (Co-PI) Colorado State University 2011 The Water Environment Research Foundation, a not-for-profit organization, funds and manages water quality research for its subscribers through a diverse public-private partnership between municipal utilities, corporations, academia, industry, and the federal government. WERF subscribers include municipal and regional water and wastewater utilities, industrial corporations, environmental engineering firms, and others that share a commitment to cost-effective water quality solutions. WERF is dedicated to advancing science and technology addressing water quality issues as they impact water resources, the atmosphere, the lands, and quality of life. For more information, contact: Water Environment Research Foundation 635 Slaters Lane, Suite G-110 Alexandria, VA 22314-1177 Tel: (571) 384-2100 Fax: (703) 299-0742 www.werf.org [email protected] This report was co-published by the following organization. IWA Publishing Alliance House, 12 Caxton Street London SW1H 0QS, United Kingdom Tel: +44 (0) 20 7654 5500 Fax: +44 (0) 20 7654 5555 www.iwapublishing.com [email protected] © Copyright 2011 by the Water Environment Research Foundation.
    [Show full text]
  • Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
    Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems-
    [Show full text]
  • Sustainable Sanitation – a Case Study in Yasmine and Awda Informal Settlements (Lebanon)
    Master's Thesis 2019 30 ECTS Faculty of Environmental Sciences and Natural Resource Management Sustainable sanitation – A case study in Yasmine and Awda informal settlements (Lebanon) Elisa Winger Eggen Master of Science in Water and Environmental Technology (M-VM) PREFACE This MSc thesis is my final work of the Master of Science in Water- and Environmental Technology at Norwegian University of Life Sciences (NMBU). The research is based on fieldwork undertaken from the 27th of January until the 3rd of March 2019 in Bekaa Valley, Bar Elias, Lebanon, aimed to find sustainable sanitation solutions in two refugee camps. The study has been carried out in close collaboration with Norwegian Church Aid (NCA), International Orthodox Christian Charities (IOCC) and Multiconsult. My motivation for this thesis was based on a desire to choose a research topic that could be meaningful for others, and my interest in water and sanitation in developing countries. I sincerely hope this will contribute to improvements and implementation of a holistic sanitation system which will benefit the people in the studied camps. Ås, May 14th, 2019 Elisa Winger Eggen I II ACKNOWLEDGEMENTS Working on this thesis has been exciting, challenging and educational. There is a lot of effort invested in the final version of the thesis, and the learning process to this point has been invaluable. Many have contributed to this work, whom I will like to thank; First and foremost, my deepest gratitude goes to my main supervisor, Professor Petter D. Jenssen, for his enormous inspiration, engagement, valuable feedback and support along the way. I would also like to thank Tor Valla (Multiconsult), Ioannis Georgiadis (NCA) and Manfred Arlt (NCA) for introducing me to this project in Lebanese refugee camps, where my education would be relevant and applied in practice.
    [Show full text]
  • On-Site Wastewater Treatment and Reuses in Japan
    Proceedings of the Institution of Civil Engineers Water Management 159 June 2006 Issue WM2 Pages 103–109 Linda S. Gaulke Paper 14257 PhD Candidate, Received 05/05/2005 University of Washington, Accepted 01/11/2005 Seattle, USA Keywords: sewage treatment & disposal/ water supply On-site wastewater treatment and reuses in Japan L. S. Gaulke MSE, MS On-site wastewater treatment poses a challenging toilets. Since then, sewers and johkasou have developed side problem for engineers. It requires a balance of appropriate by side. levels of technology and the operational complexity necessary to obtain high-quality effluent together with As of the year 2000, 71% of household wastewater in Japan adequate reliability and simplicity to accommodate was receiving some type of treatment and 91% of Japanese infrequent maintenance and monitoring. This review residents had flush toilets.1 A breakdown by population of covers how these issues have been addressed in on-site wastewater treatment methods utilised in Japan is presented in wastewater treatment in Japan (termed johkasou). On-site Fig. 1. The Johkasou Law mandates johkasou for new systems in Japan range from outmoded designs that construction in areas without sewers. Johkasou are different discharge grey water directly into the environment to from European septic tanks—even the smallest units advanced treatment units in high-density areas that (5–10 population equivalents (p.e.)) undergo an aerobic produce reclaimed water on-site. Japan is a world leader process. in membrane technologies that have led to the development of on-site wastewater treatment units capable of water-reclamation quality effluent. Alternative 1.1.
    [Show full text]
  • 1. Urine Diversion
    1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6.
    [Show full text]
  • Doctor of Philosophy
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae”
    [Show full text]
  • Lesson B1 RESOURCE MANAGEMENT SANITATION
    EMW ATER E -LEARNING COURSE PROJECT FUNDED BY THE EUROPEAN UNION LESSON A1: C HARACTERISTIC , A NALYTIC AND SAMPLING OF WASTEWATER Lesson B1 RESOURCE MANAGEMENT SANITATION Authors: Holger Gulyas Deepak Raj Gajurel Ralf Otterpohl Institute of Wastewater Management Hamburg University of Technology Hamburg, Germany Revised by Dr. Yavuz Özoguz data-quest Suchi & Berg GmbH Keywords Anaerobic digestion, Bio-gas, Black water, Brown water, Composting/Vermicomposting, Composting/dehydrating toilet, Ecological sanitation, Grey water, Rottebehaelter, Sorting toilet, Vacuum toilet, Yellow water, EMW ATER E -LEARNING COURSE PROJECT FUNDED BY THE EUROPEAN UNION LESSON A1: C HARACTERISTIC , A NALYTIC AND SAMPLING OF WASTEWATER Table of content 1. Material flows in domestic wastewater....................................................................4 1.1 Different sources..................................................................................................4 1.2 Characteristics of different streams...................................................................4 1.3 Yellow water as fertilizer .....................................................................................6 1.4 Brown water as soil conditioner.........................................................................8 2. Conventional sanitation systems and their limitations..........................................9 3. Conventional decentralised sanitation systems – benefits and limitations.......12 4. Resource Management Sanitation .........................................................................14
    [Show full text]
  • Acceptance, Use and Maintenance of Urine Diversion Dry Toilet (UDDT) at Ethekwini Municipality
    Acceptance, use and maintenance of urine diversion dry toilet (UDDT) at eThekwini Municipality Nosipho Mkhize, Myra Taylor,Kai M. Udert, Teddy Gounden, Chris A. Buckley Background VUNA: Socio-economic boundaries Objectives: (1) Explore the use, acceptance and maintenance of the UDDT (2) Education programme to enhance the level of acceptance, use and maintenance of the UDDT. Methods Ø Mixed methods: qualitative and quantitative Ø 3 rural areas situated at East, North and South of Durban in eThekwini Ø Respondents age: 22 -63 years Quantitative Qualitative *40 households per area Qualitative random selection *Homogenous groups *Questionnaire (maintainer, non- * Purposive sampling *Profiling maintainer, non-user) *25 key informants * 12 focus group discussions -ward councillors *121 participants -ward committee -Previous local facilitators Quan2tave results Qualitave results Ø Acceptance: - acceptance low - aspire for flush toilet - role models - youth more accepting -silence about UDDT -mismatch of benefits Results cont. Ø Use: -97% are using the UDDT - children under 5yrs discouraged to use UDDT “I tell my grandchildren to use the open space by our house to defecate…I’m scared they might fall inside” (female focus group member) Results cont. Ø Maintenance: - repairing -emptying -role of children Ø Design -not accustomed to needs and reality “it’s (UDDT) too technical, having to make sure that the urine goes to which hole, it takes the comfort and peace that one should get when using a toilet” (Ward councillor) Different traits of maintainers
    [Show full text]
  • Urine Diversion Dry Toilet: a Narrative Review on Gaps and Problems and Its Transformation
    European Journal of Behavioral Sciences ISSN 2538-807X Urine Diversion Dry Toilet: A Narrative Review on Gaps and Problems and its Transformation 1* 2 3 Govinda Prasad Devkota , Manoj K. Pandey , Shyam Krishna Maharjan 1 PhD Research Scholar, Graduate School of Education, Tribhuvan University, Nepal 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norway 3 Central Department of Education, Tribhuvan University, Nepal ARTICLE INFO ABSTRACT Keywords: This review paper highlights the gaps and problems on source Eco-San Toilet separation of human excreta; implementing and adopting human Nutrients urine as nutrients for agriculture. The objective of the paper is to School Education appraise the historical context behind the promotion of Urine Transformation Diversion Dry Toilet/Eco-san toilet and its relevance in rural Nepalese context. Moreover, it highlights the experiences regarding agricultural perspectives and livelihood by applying human urine as a fertilizer. Furthermore, it helps to understand and analyze the major issues, gaps and problems in acceptance and use of human excreta in Nepalese context for scaling up of its application and its transformation through school education system. Database search based on ‘Free text term’ or key word search was the strategy used to map of all relevant articles from multiple databases; Medline (1987-2018), MeSH (2005-2018), CINAHL (1998-2018) and OvidMedline (1992-2019). For each the outputs were downloaded into RefWorks databases. Specifically, this paper focuses on urine diversion to demonstrate its potential to elegantly separate and collect as nutrients and desire to control pathogens and micro- pollutants help in sanitation. It is recommended that an urgent need to participate community people and school children to disseminate users’ perceptions, attitudes and behaviour concerning the urine diversion toilets.
    [Show full text]
  • “He Hath Mingled with the Ungodly”
    ―HE HATH MINGLED WITH THE UNGODLY‖: THE LIFE OF SIMEON SOLOMON AFTER 1873, WITH A SURVEY OF THE EXTANT WORKS CAROLYN CONROY TWO VOLUMES VOLUME I PH.D. THE UNIVERSITY OF YORK HISTORY OF ART DECEMBER 2009 2 ABSTRACT This thesis focuses on the life and work of the marginalized British Pre-Raphaelite and Aesthetic homosexual Jewish painter Simeon Solomon (1840-1905) after 1873.This year was fundamental in the artist‘s professional and personal life, because it is the year that he was arrested for attempted sodomy charges in London. The popular view that has been disseminated by the early historiography of Solomon, since before and after his death in 1905, has been to claim that, after this date, the artist led a life that was worthless, both personally and artistically. It has also asserted that this situation was self-inflicted, and that, despite the consistent efforts of his family and friends to return him to the conventions of Victorian middle-class life, he resisted, and that, this resistant was evidence of his ‗deviancy‘. Indeed, for over sixty years, the overall effect of this early historiography has been to defame the character of Solomon and reduce his importance within the Aesthetic movement and the second wave of Pre-Raphaelitism. It has also had the effect of relegating the work that he produced after 1873 to either virtual obscurity or critical censure. In fact, it is only recently that a revival of interest in the artist has gained momentum, although the latter part of his life from 1873 has still remained under- researched and unrecorded.
    [Show full text]
  • Designing the Next Generation of Sanitation Businesses
    DESIGNING THE NEXT GENERATION OF SANITATION BUSINESSES A REPORT BY HYSTRA FOR THE TOILET BOARD COALITION - SEPTEMBER 2014 SPONSORED BY Authors Contributors Jessica Graf, Hystra Network Partner Heiko Gebauer, Eawag Olivier Kayser, Hystra Managing Director Lucie Klarsfeld, Hystra Project Manager Simon Brossard, Hystra Consultant Mathilde Moine, Hystra Junior Consultant To download this Report, visit www.hystra.com For more information on this project, please contact: [email protected] About Hystra Hystra is a global consulting firm that works with business and social sector pioneers to design and implement hybrid strategies, i.e. innovative market-like approaches that are economically sustainable, scalable and eradicate social and environmental problems, and combine the insights and resources of for-profit and not-for-profit sectors. For more information, visit www.hystra.com ACKNOWLEDGEMENTS The authors of this Report would like to thank the Sponsors that made this work possible. Integrating their different perspectives has been critical in shaping meaningful recommendations for the sector. We also want to thank the social entrepreneurs who shared Nageshwara Charitable Trust (NCT), Sanishop India, their innovative work, and the experts who contributed eKutir: Rita Bhoyar, Mukund Dhok, HMB Murthy insights over the course of this study. Your support and (Nageshwara Charitable Trust), R. Subramaniam Iyer, commitment are deeply appreciated. Sundeep Vira (WTO), KC Mishra (eKutir), Tripti Naswa (Sattva) In addition, the authors would like to acknowledge that the SOIL/Re.source: Sasha Kramer, Leah Page work presented in the Report builds on the research work WaterSHED: Phav Daroath, Aun Hengly, Lyn Mclennan, undertaken by the Toilet Board Coalition, a global business- Geoff Revell led alliance that aims to promote market-based solutions X-Runner: Jessica Altenburger, Isabel Medem to sanitation and bring them to scale.
    [Show full text]