Introduction MULTIPLE MYCOTOXINS in • Main Mycotoxins of Interest in Iowa Are Vomitoxin (DON), Zearalenone, Fumonisin and CORN – and RELATED Ochratoxin

Total Page:16

File Type:pdf, Size:1020Kb

Introduction MULTIPLE MYCOTOXINS in • Main Mycotoxins of Interest in Iowa Are Vomitoxin (DON), Zearalenone, Fumonisin and CORN – and RELATED Ochratoxin 2/27/2020 Introduction MULTIPLE MYCOTOXINS IN • Main mycotoxins of interest in Iowa are vomitoxin (DON), zearalenone, fumonisin and CORN – AND RELATED ochratoxin. TOPICS – May see aflatoxin, but it is more associated with hot, dry weather • Mycotoxins are produced by molds John Patience & Leigh Ruckman – Aspergillus, Fusarium, Penicillium Applied Swine Nutrition Dept. of Animal Science & – You can have mold in corn without mycotoxins, Iowa Pork Industry Center Iowa State University but you cannot have mycotoxins without molds – Mold without mycotoxins can still be a problem IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY Presented at 2020 IPPA/IPIC Regional Swine Conferences APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 1 2 Digestibility of energy in moldy corn Relationship between % damaged kernels selected for low toxin content and energy content of corn 89 88 88 87 87 R² = 0.2186 86 85 86 84 ATTD, % ATTD, 85 83 82 84 81 83 80 Energy Digestibility, % Digestibility, Energy Good 1234567 Corn 82 Moldy corn contained, on average, 3.4% less energy than clean corn. 0 20 40 60 80 The worst sample contained 5.1% less energy than clean corn. Percent Damaged Kernels IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION Source: Pilcher at al., 2010 APPLIED SWINE NUTRITION 3 4 Relationship between % damaged kernels Random thoughts and messages - 1 and energy content of corn 88 • When expressing the concentration of mycotoxins in feed, mg/kg is the same as ppm 87 R² = 0.5885 • Mycotoxins present in corn will be concentrated in 86 co-products such as DDGS (~3X) 85 • Compared to other species, pigs seem especially 84 susceptible to the effects of vomitoxin 83 • More than 1 mycotoxin can be present in a single Energy Digestibility, % Digestibility, Energy sample of corn 82 – This may be a problem when feeding pigs as the 0 20 40 60 80 effects of each mycotoxin may be additive Percent Damaged Kernels IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 5 6 1 2/27/2020 Random thoughts and messages - 2 Mycotoxin test kits - Romer • Assaying for mycotoxins is very, very difficult because sampling is very difficult Toxin Detection Limit Quantitation – Toxins are often localized in the sample. Range Collecting samples from one region of the DON 0.2 ppm 0.25 – 5.00 ppm field or section of a grain bin may give an inaccurate or negative result, when only one Fumonisin 0.2 ppm 0.25 –5.0 ppm part of the field or grain bin can be very “hot” Ochratoxin 1.9 ppb 2 to 40 ppb – There is considerable variation in lab results; T-2 toxin 10 ppb 20 –500 ppb the same sample submitted to different labs may differ Zearalenone 20 ppb 25 – 1,000 ppb IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION Source: Romer Labs, 2020 7 8 Mycotoxins and molds Mycotoxins symptoms - Vomitoxin • Field molds – Grow prior to harvest when humidity is above 70% • Also called deoxynivalenol and grain moisture is above 22% – Fusariums are field molds and produce vomitoxin • Reduced feed intake, up to complete feed (DON), zearalenone and fumonisin refusal if concentration is high enough • Storage molds – Grow after harvest (can grow in the field in some • Reduced growth rate which is conditions) and require grain moisture between 12% concentration dependent and 18% – Aspergillus and Penicillium are storage molds and • At high concentrations, vomiting, diarrhea, produce aflatoxin and ochratoxin severe lesions in the gut, sudden death • NB. Field molds can continue to grow during storage; storage molds can grow prior to harvest, eg Aspergillus flavus which produces aflatoxin IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 9 10 Mycotoxins symptoms - Zearalenone Mycotoxins symptoms - Fumonisins • Reduced feed intake • Swelling and redness of the vulva • Reduced growth rate • Prolapse (rectal and vaginal) • Possible immunosuppression • Reduced litter size • Lung lesions • Failure to cycle • Liver impairment • False pregnancy • Difficulty breathing • Death IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 11 12 2 2/27/2020 Mycotoxins symptoms - Ochratoxin Mycotoxin tolerances - 1 • Not well defined, especially for • Reduced growth rate zearalenone (because it is so heavily related to reproduction), fumonisins (relatively new) and ochratoxin (little science or experience • Kidney lesions, or even kidney failure • Following tolerances assume no other confounding toxins present IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 13 14 Mycotoxin tolerances - 2 Mycotoxin levels in new crop corn Total • Vomitoxin Loc’n N Vomitoxin Zearalenone Aflatoxin – <1 ppm for finishing swine; <0.5 ppm for nursery pigs fumonisins ppm ppb ppm ppb – No defined tolerance for breeding stock IA 13 2.1 103 0.8 1.4 • Zearalenone – <1 ppm is current recommendation for nursery pigs MN 12 0.6 39 0.1 0.5 and sows; may actually be lower than this in the breeding herd. We recommend avoiding zearalenone NE 10 1.9 31 0.7 0.7 in all diets for breeding stock. – <3 ppm for finishing swine SD 3 0.4 0.1 0.6 0.5 • Fumonisin – <10 ppm IL 2 0.7 4 0.7 0.3 Ave. 40 1.0 39 0.4 0.6 • Ochratoxin A Min. 0.1 0.02 0.01 0.0 – <0.2 ppm Max. 4.3 316 3.2 1.9 High 16 ? 0 0 IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 15 16 Mean of positive samples in 2019 Mycotoxin analysis of feed (ppm) Corn Corn by-product Deoxynivalenol Zearalenone Total fumonisins 4.5 3.97 Phase 1 (d 0-14) 4.0 3.54 CTL 1.6 0.3 0.7 3.5 CTL+DZF 9.2 0.6 1.0 3.0 2.76 Phase 2 (d 14-42) 2.5 CTL 1.6 0.3 0.8 CTL+DZF 6.9 0.7 1.1 2.0 Phase 3 (d 42-70) 1.5 CTL 1.8 0.5 0.8 1.0 0.88 CTL+DZF 5.8 0.9 1.2 0.59 Mycotoxin level (mg/kg) 0.45 0.5 Phase 4 (d 70-126) CTL 1.2 0.3 0.9 0.0 B-trichothecenes Zearalenone Fumonisin CTL+DZF 3.8 0.6 0.9 IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY Adapted from Biomin, 2020 APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 17 18 3 2/27/2020 Impact of mycotoxins on BW over time Impact of mycotoxins on overall growth (d 0-95) performance (d 0-126) Diet: P < 0.001 CTL CTL+DZF Diet × time: P < 0.001 280 * Diet P-value 250 Item CTL CTL+DZF SEM Diet 220 * Initial BW, lb 75.0 75.2 2.0 0.985 a b 190 Final BW, lb 287.3 265.7 2.6 <0.001 a b 160 * ADG, lb 2.09 1.74 0.04 <0.001 a b 130 * ADFI, lb 6.02 5.49 0.13 0.016 Body weight, Body weight, lb G:F ratio 2.85a 3.13b 0.01 0.043 100 * 70 0 14 28 42 70 95 Day of experiment IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 19 20 Impact of mycotoxins on carcass Impact of mycotoxins on fecal scoring characteristics Diet: P = 0.032 CTL CTL+DZF Diet × time: P = 0.005 2.0 * Diet P-value 1.8 * Item CTL CTL+DZF SEM Diet 1.6 203.5a 197.1b 1.8 0.024 1.4 HCW, lb 1.2 Dressing, % 70.9a 74.3b 0.8 0.009 1.0 Backfat depth, inch 0.51 0.47 0.01 0.172 0.8 * Loin depth, inch 2.76 2.68 0.03 0.057 Fecal Fecal score 0.6 0.4 Lean, % 56.9 56.7 0.2 0.597 0.2 0.0 0 14 28 42 70 95 Day of experiment IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 21 22 Analyzed mycotoxin concentration of the Impact of mycotoxin contamination of feed on dietary treatments final BW Trt: P < 0.001 250 Item Control DON 34 lb Deoxinivalenol (vomitoxin), mg/kg 0.1 1.8 230 226.9 Fumonisin B1, mg/kg 0.9 0.9 210 Fumonisin B2, mg/kg 0.1 0.1 192.9 Zearalenone, mg/kg <0.1 1.9 190 Final BW, lb BW, Final 170 150 Control Toxins IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 23 24 4 2/27/2020 Impact of mycotoxin contamination of feed on Impact of vomitoxin (3.2 ppm) on ADFI nursery pig performance Trt: P < 0.001 7.50 Time: P < 0.001 Trt. × Time: P < 0.001 Treatment P-value 6.50 Item Control Vomitoxin Diet 5.50 Initial wt., lb 14.2 14.2 0.752 50% Control Final wt., lb 36.3 35.7 0.185 4.50 Toxins ADFI, ADFI, lb Daily gain, lb 0.79 0.75 0.001 3.50 Daily feed, lb 1.21 1.17 0.068 2.50 Feed:gain 1.54 1.56 0.149 1.50 NB. Experiment commenced 1 week after weaning 0 7 14 21 28 Time (d) IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 25 26 Impact of vomitoxin (3.2 ppm) on Mycotoxin mitigation strategies - 1 number of medical treatments Treatment 1. Screen corn to lower mycotoxin levels in Wk postweaning Control Vomitoxin corn 1 23 38 2 4 15 3 0 1 4 1 7 Total 28 61 IOWA STATE UNIVERSITY IOWA STATE UNIVERSITY APPLIED SWINE NUTRITION APPLIED SWINE NUTRITION 27 28 Screening as a means of reducing Mycotoxin mitigation strategies – 1 mycotoxin content of corn 1.
Recommended publications
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
    Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition.
    [Show full text]
  • Mycotoxins: a Review of Dairy Concerns
    Mycotoxins: A Review of Dairy Concerns L. W. Whitlow, Department of Animal Science and W. M. Hagler, Jr., Department of Poultry Science North Carolina State University, Raleigh, NC 27695 Introduction mycotoxins such as the ergots are known to affect cattle and may be prevalent at times in certain feedstuffs. Molds are filamentous (fuzzy or dusty looking) fungi that occur in many feedstuffs including roughages and There are hundreds of different mycotoxins, which are concentrates. Molds can infect dairy cattle, especially diverse in their chemistry and effects on animals. It is during stressful periods when they are immune likely that contaminated feeds will contain more than one suppressed, causing a disease referred to as mycosis. mycotoxin. This paper is directed toward those Molds also produce poisons called mycotoxins that affect mycotoxins thought to occur most frequently at animals when they consume mycotoxin contaminated concentrations toxic to dairy cattle. A more extensive feeds. This disorder is called mycotoxicosis. Mycotoxins review is available in the popular press (Whitlow and are produced by a wide range of different molds and are Hagler, 2004). classified as secondary metabolites, meaning that their function is not essential to the mold’s existence. The Major toxigenic fungi and mycotoxins thought to be U.N.’s Food and Agriculture Organization (FAO) has the most prevalent and potentially toxic to dairy cattle. estimated that worldwide, about 25% of crops are affected annually with mycotoxins (Jelinek, 1987). Such surveys Fungal genera Mycotoxins reveal sufficiently high occurrences and concentrations of Aspergillus Aflatoxin, Ochratoxin, mycotoxins to suggest that mycotoxins are a constant Sterigmatocystin, Fumitremorgens, concern.
    [Show full text]
  • Vomitoxin (DON) Fact Sheet
    Crop File 6.05.013 Issued 09/17 ffv Livestock and Feedstuff Management Vomitoxin (DON) fact sheet “Mycotoxins” are natural chemicals produced by certain Table 2. FDA advisory levels for vomitoxin (DON) in various fungi, many that produce molds. Mycotoxins can affect commodities human or animal health if they consume contaminated food GRAINS and GRAIN PRODUCTS Advisory level1 or feed. There are currently 400 to 500 known mycotoxins, intended for: (mg/kg or ppm) Beef or feedlot cattle, older than 4 each produced by a different mold. 10 (11.4) months A. What is “vomitoxin”? Dairy cattle, older than 4 months 10 (11.4) 1. Common name for deoxynivalenol (DON) Swine 5 (5.7) Chickens 10 (11.4) 2. Produced by Fusarium and GIbberella fungi a. Fusarium graminearum is most notable for DON All other animals 5 (5.7) DISTILLERS GRAIN, BREWERS GRAINS, production Advisory level1 GLUTEN FEEDS, and GLUTEN MEAL i. Responsible for head blight or “scab” disease of (mg/kg or ppm) intended for: wheat Beef cattle, older than 4 months 30 (34) ii. Responsible for “red ear rot” in corn b. Molds can proliferate before harvest, but continue to Dairy cattle, older than 4 months 30 (34) grow postharvest TOTAL RATION2 Advisory level1 intended for: (mg/kg or ppm) B. Vomitoxin (DON) advisory levels Beef or feedlot cattle, older than 4 10 (11.4) months 1. Advisory levels differ from action levels Dairy cattle, older than 4 months 5 (5.7) a. Provide an adequate margin of safety to protect human and animal health Swine 1 (1.1) b.
    [Show full text]
  • FOLIA VETERINARIA Is a Scientific Journal Issued by the University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
    FOLIA VETERINARIA The scientific journal of the ISSN 0015-5748 UNIVERSITY OF VETERINARY MEDICINE AND eISSN PHARMACY IN KOŠICE — Slovakia 2453-7837 2 LXIV • 2020 FOLIA VETERINARIA is a scientific journal issued by the University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia. The journal is published quaterly in English (numbers 1—4) and distributed worldwide. The list of Editorial Board of scientific journal Folia Veterinaria: Editor-in-Chief: Jana Mojžišová Deputy/Managing Editor: Juraj Pistl Editorial Board: Aland, A. (Tartu, Estonia), Banhazi, T. (Toowomba, Aus- tralia), Bao, E. (Nanjing, China), Bíreš, J. (Bratislava, Slovakia), Celer, V. (Brno, Czechia), Fablet, Ch. (Ploufragan, France), Faix, Š. (Košice, Slovakia), Faixová, Z. (Košice, Slovakia), Fedoročko, P. (Košice, Slovakia), Gunnarsson, S. (Skara, Sweden), Kolacz, R. (Wrocław, Poland), Könyves, L. (Budapest, Hungary), Nagy, J. (Košice, Slovakia), Novák, M. (Bratislava, Slovakia), Paulsen, P. (Vienna, Austria), Pěchová, A. (Brno, Czechia), Sossidou, E. N. (Thermi Thessa- loniki, Greece), Večerek, V. (Brno, Czechia), Vorlová, V. (Brno, Czechia) Vargová, M. — technical editor (Košice, Slovakia) Contact: tel.: +421 915 984 669 e-mail: [email protected] Electronic Publisher: De Gruyter Poland, Bogumila Zuga 32A 01-811 Warsaw, Poland ISSN 2453-7837 on-line ISSN 0015-5748 print EV 3485/09 Publisher’s Identification number: IČO 00397474 June 2020 FOLIA VETERINARIA PUBLISHED BY THE UNIVERSITY OF VETERINARY MEDICINE AND PHARMACY IN KOŠICE SLOVAK IA Folia Veterinaria Vol. 64, 2, 2020 V YDÁVA UNIVERZITA VETERINÁRSKEHO LEKÁRSTVA A FARMÁCIE V KOŠICIACH 2020 F O L I A V E T E R I N A R I A, 64, 2, 2020 C O N T E N T S ADESOKAN, H.
    [Show full text]
  • Biological Toxins As the Potential Tools for Bioterrorism
    International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins.
    [Show full text]
  • Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells
    International Journal of Molecular Sciences Article Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells Song Yu, Bingxuan Jia, Na Liu, Dianzhen Yu and Aibo Wu * SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (S.Y.); [email protected] (B.J.); [email protected] (N.L.); [email protected] (D.Y.) * Correspondence: [email protected]; Tel.: +86-21-54920716 Received: 23 July 2020; Accepted: 14 August 2020; Published: 18 August 2020 Abstract: Fumonisin contaminates food and feed extensively throughout the world, causing chronic and acute toxicity in human and animals. Currently, studies on the toxicology of fumonisins mainly focus on fumonisin B1 (FB1). Considering that FB1, fumonisin B2 (FB2) and fumonisin B3 (FB3) could coexist in food and feed, a study regarding a single toxin, FB1, may not completely reflect the toxicity of fumonisin. The gastrointestinal tract is usually exposed to these dietary toxins. In our study, the human gastric epithelial cell line (GES-1) was used as in vitro model to evaluate the toxicity of fumonisin. Firstly, we found that they could cause a decrease in cell viability, and increase in membrane leakage, cell death and the induction of expression of markers for endoplasmic reticulum (ER) stress. Their toxicity potency rank is FB1 > FB2 >> FB3. The results also showed that the synergistic effect appeared in the combinations of FB1 + FB2 and FB1 + FB3.
    [Show full text]
  • Determination of Zeranol and Its Metabolites in Bovine Muscle Tissue with Gas Chromatography-Mass Spectrometry
    Bull Vet Inst Pulawy 56, 335-342, 2012 DOI: 10.2478/v10213-012-0059-4 DETERMINATION OF ZERANOL AND ITS METABOLITES IN BOVINE MUSCLE TISSUE WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY IWONA MATRASZEK-ŻUCHOWSKA, BARBARA WOŹNIAK, AND JAN ŻMUDZKI Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland [email protected] Received: June 19, 2012 Accepted: September 7, 2012 Abstract This paper describes the quantitative method of determination of chosen substances from resorcylic acid lactones group: zeranol, taleranol, α-zearalenol, β-zearalenol, and zearalanone in bovine muscle tissue. The presented method is based on double diethyl ether liquid-liquid extraction (LLE), solid phase extraction (SPE) clean up, and gas chromatography mass spectrometry (GC- MS) analysis. The residues were derivatised with a mixture of N-methyl-N-trimethylsilyltrifluoroacetamide, ammonium iodide, and DL-dithiothreitol (1,000:2:5, v/w/w). The GC-MS apparatus was operated in positive electron ionisation mode. The method was validated according to the European Union performance criteria pointed in Decision Commission 2002/657/EC. The average recoveries of all analytes at 1 µg kg-1 level were located between 83.7% and 94.5% values with the coefficients of variation values <25%. The decision limits (CCα) and detection capabilities (CCβ) for all analytes ranged from 0.58 to 0.82 µg kg-1 and from 0.64 to 0.94 µg kg-1, respectively. The procedure has been accredited and is used as a screening and confirmatory method in control of hormone residues in animal tissues. Key words: bovine muscle tissue, zeranol, GC-MS.
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • | Hao Wanatha Maria Del Contatta Datum
    |HAO WANATHA MARIAUS009844679B2 DEL CONTATTA DATUM (12 ) United States Patent ( 10 ) Patent No. : US 9 ,844 , 679 B2 Nayfach - Battilana ( 45 ) Date of Patent : * Dec . 19 , 2017 (54 ) NANOPARTICLE - SIZED MAGNETIC (56 ) References Cited ABSORPTION ENHANCERS HAVING THREE - DIMENSIONAL GEOMETRIES U . S . PATENT DOCUMENTS ADAPTED FOR IMPROVED DIAGNOSTICS 4 , 106 ,488 A 8 / 1978 Gordon AND HYPERTHERMIC TREATMENT 4 ,303 ,636 A 12/ 1981 Gordon ( 71 ) Applicant: Qteris, Inc. , San Rafael, CA (US ) ( Continued ) ( 72 ) Inventor : Joseph N . Nayfach - Battilana , San FOREIGN PATENT DOCUMENTS Rafael , CA (US ) EP 0040512 B1 11 / 1981 EP 0136530 A16 /1988 (73 ) Assignee : Qteris, Inc. , San Rafael , CA (US ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U . S . C . 154 ( b ) by 903 days. “ Krishna et al ., Unusual size -dependent magnetization in near This patent is subject to a terminal dis hemispherical Co nanomagnets on SiO . sub . 2 from fast pulsed laser claimer . processing” , J . Appl. Phys. 103 , 073902 (2008 ) (“ Krishna ” ) .* (Continued ) ( 21 ) Appl . No .: 14 /044 , 251 Primary Examiner — Joseph Stoklosa (22 ) Filed : Oct. 2 , 2013 Assistant Examiner — Adam Avigan (74 ) Attorney , Agent, or Firm — Marek Alboszta (65 ) Prior Publication Data US 2014 /0172049 A1 Jun . 19 , 2014 (57 ) ABSTRACT Nanoparticle- sized magnetic absorption enhancers (MAES ) Related U . S . Application Data exhibiting a controlled response to a magnetic field , includ ing a controlled mechanical response and an inductive (62 ) Division of application No . 12 /925 ,904 , filed on Nov. thermal response . The MAEs have a magnetic material that 1 , 2010 , now Pat .
    [Show full text]
  • Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: an Update
    toxins Review Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update Giuseppe Conte , Marco Fontanelli, Francesca Galli , Lorenzo Cotrozzi * , Lorenzo Pagni and Elisa Pellegrini Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] (G.C.); [email protected] (M.F.); [email protected] (F.G.); [email protected] (L.P.); [email protected] (E.P.) * Correspondence: [email protected] Received: 12 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Mycotoxins are secondary metabolites produced by some filamentous fungi, which can cause toxicity in animal species, including humans. Because of their high toxicological impacts, mycotoxins have received significant consideration, leading to the definition of strict legislative thresholds and limits in many areas of the world. Mycotoxins can reduce farm profits not only through reduced crop quality and product refusal, but also through a reduction in animal productivity and health. This paper briefly addresses the impacts of mycotoxin contamination of feed and food on animal and human health, and describes the main pre- and post-harvest systems to control their levels, including genetic, agronomic, biological, chemical, and physical methods. It so highlights (i) the lack of effective and straightforward solutions to control mycotoxin contamination in the field, at pre-harvest, as well as later post-harvest; and (ii) the increasing demand for novel methods to control mycotoxin infections, intoxications, and diseases, without leaving toxic chemical residues in the food and feed chain. Thus, the broad objective of the present study was to review the literature on the use of ozone for mycotoxin decontamination, proposing this gaseous air pollutant as a powerful tool to detoxify mycotoxins from feed and food.
    [Show full text]
  • Rope Parasite” the Rope Parasite Parasites: Nearly Every AuSC Child I Ever Treated Proved to Carry a Significant Parasite Burden
    Au#sm: 2015 Dietrich Klinghardt MD, PhD Infec4ons and Infestaons Chronic Infecons, Infesta#ons and ASD Infec4ons affect us in 3 ways: 1. Immune reac,on against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intes4nal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxificaon with herbs and medical drugs, ac4vaon of detox pathways by solving underlying blocKages (methylaon, etc.) 3. Compe,,on for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigene#cs • In 2000 I examined 10 au4s4c children with no Known history of Lyme disease (age 3-10), with the IgeneX Western Blot test – aer successful treatment. 5 children were IgM posi4ve, 3 children IgG, 2 children were negave. That is 80% of the children had clinical Lyme disease, none the history of a 4cK bite! • Why is it taking so long for au4sm-literate prac44oners to embrace the fact, that many au4s4c children have contracted Lyme or several co-infec4ons in the womb from an oVen asymptomac mother? Why not become Lyme literate also? • Infec4ons can be treated without the use of an4bio4cs, using liposomal ozonated essen4al oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injecons of artesunate, the Klinghardt co-infec4on cocKtail and more. • Symptomac infec4ons and infestaons are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the bacKdrop of epigene4c injuries (epimutaons) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, worK place related lead, aluminum, herbicides etc., electromagne4c radiaon exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.).
    [Show full text]