A Rare Record of the Bump-Head Sunfish, Mola Alexandrini (Tetraodontiformes: Molidae) with a 117 Kg Ovary from Hualien, Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

A Rare Record of the Bump-Head Sunfish, Mola Alexandrini (Tetraodontiformes: Molidae) with a 117 Kg Ovary from Hualien, Taiwan Biogeography 20. 73–77. Sep. 20, 2018 A rare record of the bump-head sunfish, Mola alexandrini (Tetraodontiformes: Molidae) with a 117 kg ovary from Hualien, Taiwan Etsuro Sawai1 and Yung Chou Chang2* 1 Ocean Sunfishes Information Storage Museum, C-102 Plaisir Kazui APT, 13-6 Miho, Shimizu-ku, Shizuoka, Shizuoka 424-0901, Japan 2 Center for General Education, Tzu Chi University, No.701, Sec. 3, Jhongyang Rd., Hualien City, Hualien County 97004, Taiwan, R.O.C. Abstract: A female specimen of Mola alexandrini (Ranzani, 1839) was captured off the waters of Hualien, Taiwan on March 2008, representing the third record of this species from Taiwanese waters. To date, this specimen (1380 kg body weight) is the heaviest M. alexandrini on record in Taiwan. Its ovarian weight (117 kg) and gonadosomatic index (8.5) are also the heaviest and highest respectively recorded values for the Mola genus. Key words: gonadsomatic index, Mola alexandrini, ovary, rare record, Taiwan Some species of the ocean sunfishes of the family Taiwanese waters (especially in eastern Taiwan) is Molidae (Tetraodontiformes) grow to more than 3 significantly lower for Mola (10% of total ocean sun- m total length (TL) and 2000 kg body weight (BW) fishes catch) than forMa. lanceolatus (ca. 90 %) (Liu (e.g., Sawai et al., 2018). They have a clavus instead et al., 2009), this fact is relatively unknown among of a caudal fin (e.g., Fraser-Brunner, 1951). Ocean Taiwanese people and accurate knowledge on Mola sunfishes have a long history of taxonomic confu- in Taiwan is limited. Mola in the Taiwanese waters sion in the world. There are five currently recognized are generally recognized as being from only one species in the family Molidae: ocean sunfish Mola species, M. mola (e.g., Shen & Wu, 2011). However, mola (Linnaeus, 1758), bump-head sunfish M. al- two species, M. mola and M. alexandrini (Yoshita exandrini (Ranzani, 1839), hoodwinker sunfish M. et al., 2009; Sawai et al., 2018), have recently been tecta Nyegaard, Sawai, Gemmell, Gillum, Loner- confirmed. Of the two Mola species, M. alexandri- agan, Yamanoue and Stewart, 2017, sharptail sunfish ni from Taiwanese waters was reported based only Masturus lanceolatus (Liénard, 1840), and slender on two specimens until now (sample code TW-3 in sunfish Ranzania laevis (Pennant, 1776) (Nyegaard Yoshita et al., 2009 and TaHMo-2 in Sawai et al., et al., 2018; Sawai et al., 2018). 2018). Here we report a huge specimen of M. alex- Mola sunfishes are sometimes confused with andrini from the waters off Hualien (eastern Taiwan) Ma. lanceolatus by the similarity of their external as the third record from the Taiwanese waters. This morphology. For example, the photograph of Ma. specimen also represents the heaviest M. alexandrini lanceolatus is used in some Taiwanese fish picture record in Taiwan, and the heaviest ovarian record in books as M. mola (e.g., Shen & Wu, 2011; Zheng Mola. et al., 2011). Although ocean sunfishes catch rate in A female specimen was caught by Chaojin set net ——————————————————————— off the coast of Hualien, Taiwan (24°2'N, 121°37'E), *Corresponding author:[email protected] on 27 March 2008. This specimen was brought to − 73 − Rare record of Mola alexandrini with 117 kg ovary Etsuro Sawai and Yung Chou Chang the fishing port and sold after which the whole body and ovary were weighed to the nearest 1 kg. Unfor- tunately, the TL of the specimen was not formally measured but is estimated to exceed 2 m TL from the photograph (Fig. 1). No ovarian tissue samples were obtained. Species identification followed Sawai et al. (2018). This specimen was identified as M. alexandrini through three key characters: bumped head (arrow in Fig. 1A), bumped chin (arrow in Fig. 1A), and rounded clavus (arrow in Fig. 1B). The shape of the gonads of Mola significantly differs between male and female: the ovary is singular and ball shaped, the testis is paired, elongated and rod-like (Nakatsubo et al., 2007a; Nyegaard et al., 2018; Sawai et al., 2018). The gonad of this specimen was determined as an ovary because it was singular and ball shaped Fig. 2. An ovary (117 kg) of Mola alexandrini from Hualien, Taiwan. A: the ovary and some oocytes inside the peritoneal cavity. B: the ovary at weighing. This ovary was weighed with a blue basket (3 kg), and the needle of the green weighing scale was rotated one time (arrow) and showed 120 kg. A jin (Taiwanese traditional unit of weight) equals to 0.6 kg. Photographs by W. Z. Liu. (Fig. 2). This specimen was 1380 kg in BW, 117 kg in go- nad weight (GW). Two specimens of M. alexandrini in the previous study (Yoshita et al., 2009; Sawai et al., 2018) have not been recorded for their body weight. Therefore, this present specimen represents the heaviest M. alexandrini on record in Taiwan. The Fig. 1. A female specimen of Mola alexandrini (1380 kg body ovary was weighed with a blue basket (3 kg, 40.7 cm weight, 117 kg gonad weight) was caught by Chaojin set net off the coast of Hualien, Taiwan (24°2'N, 121°37'E), × 66.2 cm × 35.0 cm), and shown to be 120 kg (the on 27 March 2008. A: head. B: posterior dorsal part of needle of the green weighing scale was rotated one body. Arrows indicate taxonomic key characters (bumped head, bumped chin, and rounded clavus) by Sawai et al. time; Fig. 2B). Although two persons supported the (2018). Photographs by W. Z. Liu. blue basket, the weighing was not almost affected. − 74 − Rare record of Mola alexandrini with 117 kg ovary Etsuro Sawai and Yung Chou Chang The only additional information on ovarian weight specimen (0.35). Maturity stage of Kamogawa spec- from M. alexandrini is only from a Kamogawa imen was determined to be the yolk globule stage specimen (2300 kg BW, ca. 8 kg GW, 272 cm TL) by histological observations of oocyte (Nakatsubo et in Nakatsubo et al. (2007b) (Table 1). Therefore, al., 2007b). Oocytes from the ovary of Hualien spec- we collected the ovarian data from the literature and imen are visible Fig. 2A. They are macroscopically compared it at the genus level. A literature survey translucent and orange or reddish orange (Fig. 2A). of available ovarian data from fish genera (Lidth de Referring to the other fishes, these macroscopic fea- Jeude, 1890; Martin & Drewry, 1978; Nakatsubo et tures of oocyte are presumed to be the stage between al., 2007b; Soichi, 2009; Yamanoue & Sawai, 2012; ‘developing’ and ‘spawning’ (e.g., Mackie et al., Kang et al., 2015; Sawai et al., 2015) shows Hualien 2009; Thulasitha & Sivashanthini, 2013). Although specimen to have the heaviest Mola ovary on record the level of GSI does not necessarily match the level (Table 1). of maturity stage (Nakatsubo et al., 2007a, b), the Mola alexandrini is currently the world's heavi- maturity stage of the Hualien specimen was likely est bony fish species (Sawai et al., 2018) but does more advanced than Kamogawa specimen. These not hold the record of the heaviest bony fish ovary. data from a huge ovary may suggest that the Taiwan- The current record belongs to a beluga sturgeon ese waters are an important place for maturity and Huso huso (Linnaeus, 1758) which was caught in reproduction of this species. Further studies of large the northern Caspian region in Russia in 1924. It gravid individuals are necessary to clarify the repro- weighed 1228.5 kg BW and had a 245.7 kg ovary ductive biology of M. alexandrini. containing an estimated 7729700 eggs (Babushkin, 1947; Dettlaff et al., 1993; Helfman et al., 2009). Acknowledgments The values for gonadosomatic index (GSI, the gonad weight in percent of body weight) were calcu- We would like to thank the following persons lated for the estimation of maturation: GSI = gonad and institutions for assistance: G. Shinohara, Y. Ya- weight (GW, in g) / body weight (BW, in g) × 100 manoue, M. Nyegaard, W. Z. Liu, the staff of Dong (Nakatsubo et al., 2007a). Although BW of the Hual- Chang set net fishery farm, and the fishermen oper- ien specimen in this study was lighter than BW of ating the Chaojin set net. We also thank anonymous above-mentioned Kamogawa specimen in Nakatsu- reviewers for their valuable comments, which helped bo et al. (2007b), the GSI of Hualien specimen (8.5) us to improve the manuscript. The research was sup- was significantly higher than the GSI of Kamogawa ported by the Sasakawa Scientific Research Grant Table 1. List of the published ovarian weights in the genus Mola. Ovarian weight Body weight Total length Species Locality Literature (kg)* (kg) (cm) 4.5 no data 223 Mola tecta (?)** Ameland, the Netherlands Lidth de Jeude (1890); Martin & Drewry (1978) 7.999*** 2300 272 Mola alexandrini**** off Kamogawa, Chiba, Japan Nakatsubo et al. (2007b) 2.982 no data 210 Mola sp. off Kamogawa, Chiba, Japan Soichi (2009) ca. 36 1150 275 Mola mola off Yunotsu, Shimane, Japan Yamanoue & Sawai (2012); Sawai et al. (2015) 3.47 no data 250 Mola mola***** off Jeju island, Korea Kang et al. (2015) 117 1380 no data Mola alexandrini off Hualien, Taiwan This study *A specimen with maximum ovarian weight in each literature. **This specimen was re-identified by Nyegaardet al. (2018). *** The ovarian weight in this specimen was calculated backward from the equation for obtaining the gonad index [GI = gonad weight (g) / total length (cm)3 × 10000] in Nakatsubo et al. (2007b: table 2). ****This specimen was re-identified by Sawaiet al. (2018). *****This specimen was re-identified from a taxonomic key character (wavy clavus) of fig.
Recommended publications
  • Tetraodontiformes: Tetraodontidae) and Some Related Species, Including a New Species from Hawaii!
    Pacific Science (1983), vol. 37, no. 1 © 1983 by the University of Hawaii Press. All rights reserved The Status of Torquigener hypselogeneion (Bleeker) (Tetraodontiformes: Tetraodontidae) and Some Related Species, including a New Species from Hawaii! GRAHAM S. H ARDy 2 ABSTl~ACT: Torquigener .hypselogeneion (Bleeker) and T.jiorealis (Cope) are redescnbed, and a neotype IS proposed for the former. That species differs from T. jiorealis in having smaller eye ~iameter , shorter caudal peduncle length, usuall!, lower.fin ray counts, and different color pattern. Torquigener randalli n:s~. IS descnbed .from six specimens from Oahu, Hawaii, differing from the similar T.jiorealis In shape ofdorsal and anal fins, a usually lower dorsal and anal fin ray count, and in color pattern. 1:'1 MARCH 1852 Bleeker published the descrip­ METHODS tion of a small pufferfish, which he called Measurements (taken to 2 significant Tetraodon hypselogeneion, based on speci­ figures) were by dial caliper, in a manner mens from Amboina (Ambon) (Bleeker similar to that outlined by Dekkers (1975). 1852a). In subsequent descriptions, he ex­ All measurements are from preserved speci­ tended the known distribution to cover much mens . Fin ray counts include all visible rays, ?f the D~tch Ea st Indies (Indonesia), and both branched and unbranched, and fin ray In 1865 Included examples, considered as lengths were determined from the embedded hypselogeneion, reported from the Red Sea as base. One example each of T. jiorealis and Tetrodon honckenii (not ofBloch), by Riippell T. randalli was cleared and stained and (1828). A central Pacific species, described as all others x-rayed, for examination of their ! etrodon .f!Nealis by Cope (1871), was later osteology.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Bony Fish Guide
    This guide will help you to complete the Bony Fish Observation Worksheet. Bony Fish Guide Fish (n.) An ectothermic (cold-blooded) vertebrate (with a backbone) aquatic (lives in water) animal that moves with the help of fins (limbs with no fingers or toes) and breathes with gills. This definition might seem very broad, and that is because fish are one of the most diverse groups of animals on the planet—there are a lot of fish in the sea (not to mention rivers, lakes and ponds). In fact, scientists count at least 32,000 species of fish—more than any other type of vertebrate. Fish are split into three broad classes: Jawless Fish Cartilaginous Fish Bony Fish (hagfish, lampreys, etc.) (sharks, rays, skates, etc.) (all other fish) This guide will focus on the Bony Fish. There are at least 28,000 species of bony fish, and they are found in almost every naturally occurring body of water on the planet. Bony fish range in size: • Largest: ocean sunfish (Mola mola), 11 feet, over 5,000 pounds • Smallest: dwarf pygmy goby (Pandaka pygmaea), ½ inch, a fraction of an ounce (This image is life size.) The following guide will help you learn more about the bony fish you can find throughout the New England Aquarium. Much of the guide is keyed to the Giant Ocean Tank, but can be applied to many kinds of fish. Even if you know nothing about fish, you can quickly learn a few things: The shape of a fish’s body, the position of its mouth and the shape of its tail can give you many clues as to its behavior and adaptations.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Barnacle Feeding Frenzy
    Science Unit: Marine Biodiversity: Global Ocean to the Salish Sea Lesson 4: Barnacle Feeding Frenzy Summary: Students observe live barnacles feeding (it’s often a wonderful surprise for students to discover that barnacles are living things!) They then conduct an inquiry and collect data to determine if barnacle feeding speed changes in two water temperatures. Lesson type: Live animal observations Grade level: Presented to grade 3; appropriate for grades K – 12 with age appropriate modifications Duration of lesson: 75 min Developed by: Jonathan Kellogg (Scientist); Andrea Teschner and Gillian Wilson-Haffenden (Teachers) Developed for: Lord Kitchener Elementary School Year: 2016-2017 Notes: Requires live barnacles from a local beach and sea water at two temperatures Connections to BC Curriculum Biodiversity in the local environment, Making observations about living things in the local environment, Collect simple data, Identify questions about familiar objects that can be investigated scientifically, Make predictions based on prior knowledge, Knowledge of local First Peoples, Use tables, simple bar graphs, or other formats to represent data and show simple patterns and trends, Compare results with predictions, suggesting possible reasons for findings. Objectives a) Observe live barnacles feeding in a cup of seawater and document these observations b) Predict and determine how barnacle behaviour changes with different seawater temperatures c) Learn how barnacles use their cirri (feet) to move water over their body when feeding Materials • Clear plastic cocktail • Small barnacle covered rocks • Drawing or Graphing paper cups (1 rock per student pair) • Small cooler to hold • Food colouring • Seawater to fill milk jugs. Allow one barnacles to warm to room temperature, but • Two 4L milk jugs keep the other in the refrigerator.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Four New Records of Fish Species (Cypriniformes: Nemacheilidae
    Zoological Research 35 (1): 51−58 DOI:10.11813/j.issn.0254-5853.2014.1.051 Four new records of fish species (Cypriniformes: Nemacheilidae, Balitoridae; Characiformes: Prochilodontidae) and corrections of two misidentified fish species (Tetraodontiformes: Tetraodontidae; Beloniformes: Belonidae) in Yunnan, China Marco Endruweit* Qingshan Road 601, Qingdao, China Abstract: In this study, six fish species of five families are reported for the first time from Yunnan Province, China. The nemacheilid Schistura amplizona Kottelat, 2000 is reported from the Luosuojiang River and Nanlahe River subbasins, Mekong basin; the prochilodontid Prochilodus lineatus (Valenciennes, 1837), the balitorid Vanmanenia serrilineata Kottelat, 2000, and the tetraodontid Monotrete turgidus Kottelat, 2000, from Nanlahe River subbasin, Mekong basin; the balitorid Beaufortia daon (Mai, 1978), and the belonid Xenentodon canciloides (Bleeker, 1854), both, from Black River subbasin, Red River basin. The freshwater puffer M. turgidus and the needlefish X. canciloides have been previously misidentified as Tetraodon leiurus (Bleeker, 1950) and Tylosurus strongylurus (van Hasselt, 1823), respectively. Keywords: New record; Misidentification; Mekong basin; Red River; Yunnan Yunnan Province is located in the Southwest within Chen et al in 1989, respectively 1990 for the second the People’s Republic of China. Its name refers to its volume, giving 226 species and subspecies accounts in location south of the Yunling Mountain range. It shares the first volume plus an additional 173 in the second. international border with Myanmar in the West and Through extensive fieldwork and re-evaluation of Southwest, with Laos and Vietnam in the South; national institutionally stored lots the number of Yunnanese fish borders with Xizang Autonomous Region to the species is growing (for e.g.
    [Show full text]
  • The Genome of the Largest Bony Fish, Ocean Sunfish (Mola Mola), Provides Insights Into Its Fast Growth Rate
    The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate Pan, Hailin; Yu, Hao; Ravi, Vydianathan; Li, Cai; Lee, Alison P.; Lian, Michelle M.; Tay, Boon- Hui; Brenner, Sydney; Wang, Jian; Yang, Huanming; Zhang, Guojie; Venkatesh, Byrappa Published in: GigaScience DOI: 10.1186/s13742-016-0144-3 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Pan, H., Yu, H., Ravi, V., Li, C., Lee, A. P., Lian, M. M., Tay, B-H., Brenner, S., Wang, J., Yang, H., Zhang, G., & Venkatesh, B. (2016). The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. GigaScience, 5, [36]. https://doi.org/10.1186/s13742-016-0144-3 Download date: 29. sep.. 2021 Pan et al. GigaScience (2016) 5:36 DOI 10.1186/s13742-016-0144-3 RESEARCH Open Access The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate Hailin Pan1,2†, Hao Yu1,2†, Vydianathan Ravi3†, Cai Li1,2, Alison P. Lee3, Michelle M. Lian3, Boon-Hui Tay3, Sydney Brenner3, Jian Wang4,5, Huanming Yang4,5, Guojie Zhang1,2,6* and Byrappa Venkatesh3,7* Abstract Background: The ocean sunfish (Mola mola), which can grow up to a length of 2.7 m and weigh 2.3 tons, is the world’s largest bony fish. It has an extremely fast growth rate and its endoskeleton is mainly composed of cartilage. Another unique feature of the sunfish is its lack of a caudal fin, which is replaced by a broad and stiff lobe that results in the characteristic truncated appearance of the fish.
    [Show full text]
  • Thursday, August 31, 2017 Time
    Soundings JUNE 2016 American Cetacean Society – Monterey Bay Chapter AUGUST 2017 PO Box H E, Pacific Grove, CA 93950 MONTHLY MEETING AT HOPKINS MARINE STATION, INSIDE THIS ISSUE LECTURE HALL BOAT WORKS BUILDING CALENDAR ……………….......2 (ACROSS FROM THE AMERICAN TIN CANNERY OUTLET STORES) MEETING IS OPEN TO THE PUBLIC THE RHYTHMS THAT MAKE ELEPHANT SEALS RUN OR Thursday, August 31, 2017 FIGHT………………………....2 Time: 7:30 PM WHY DON’T WHALES GET PLEASE JOIN US AT 7:00 FOR REFRESHMENTS OUT OF THE WAY?...................3 Speaker: Kip Evans PLASTIC GARBAGE PATCH Exploring Our Greatest Frontier BIGGER THAN MEXICO FOUND IN PACIFIC…….....…….…......4 Award-winning filmmaker, photographer, and explorer Kip Evans has led or participated in more GRUESOME CASES OF GREAT WHITE SHARKS HAVING than sixty expeditions throughout the world, THEIR LIVERS RIPPED OUT including recent assignments in Spain, Costa Rica, AND EATEN BY ORCAS ARE ON Chile, and the Galapagos Islands. As a THE RISE……………...………5 photographer, he has worked on dozens of National Geographic Society projects since 1998, including ORCA SURVIVAL DEPENDS ON the five-year Sustainable Seas project to explore PROTECTING CHINOOK and document the U.S. National Marine SALMON…..………..…………6 Sanctuaries. Kip’s images have been featured in books, exhibits, calendars, advertisements, and SIGHTINGS……………..…......7 magazines worldwide, including National Geographic magazine, Patagonia, and Outside. In MEMBERSHIP…………..…......8 2014, Kip lived underwater for 17 days in the Aquarius underwater laboratory as an aquanaut with Mission 31. Since 2008, Kip has been the director of Your local ACS chapter expeditions and photography for Mission Blue. Kip was recently honored as the needs you! 2017 Ocean Champion by the San Francisco Ocean Film Festival.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • First Record for the Sunfish Mola Mola (Molidae: Tetradontiformes)
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(2): 563- 574 (2019) www.ejabf.journals.ekb.eg First record for the sunfish Mola mola (Molidae: Tetradontiformes) from the Egyptian coasts, Aqaba Gulf, Red Sea, with notes on morphometrics and levels of major skeletal components Mohamed A. Amer1*; Ahmed El-Sadek2; Ahmed Fathallah3; Hamdy A. Omar4 and Mohamed M. Eltoutou4 1-Faculty of Science, Zoology Dept., Marine Biology, Al-Azhar University, Cairo, Egypt. 2- Abu Galum Marine Protectorate Area, Nature Conservation Sector, EEAA, Egypt. 3- Egyptian Environmental Affairs Agency (EEAA), Alexandria Branch, Egypt. 4-National Institute of Oceanography and Fisheries, Alexandria, Egypt. * Corresponding author: [email protected] ARTICLE INFO ABSTRACT Article History: The sunfish Mola mola is recorded for the first time from the Egyptian Received:April 30, 2019 waters at Abu Galum Protectorate Area (South Sinai), Aqaba Gulf, Red Accepted: May 28, 2019 Sea. The present study conducted to give information on morphometric Online: June 3, 2019 characters, anatomy and levels of major elements in skull, vertebrae and _______________ paraxial parts of its skeletal system. These elements comprised Ca, P, Na, K, Mg, S, Cl, Zn and Cu and their levels were estimated. The results Keywords: exhibited that Ca and P were the main components in skull and were the Sunfish most dominant elements in paraxial skeleton in addition to remarkable Mola mola ratios of Na and Cl. Cu was detected with very low ratios only in paraxial Abu Galum skeleton parts. The annuli in examined vertebrae were counted and showed South Sinai that, this fish may be in its second age group.
    [Show full text]