Photosynthesis and the Web: 2001
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Massive Simulation Shows HIV Capsid Interacting with Its Environment 19 July 2017
Massive simulation shows HIV capsid interacting with its environment 19 July 2017 scientist Juan R. Perilla, who led the study with U. of I. physics professor Klaus Schulten. Such details could help scientists find new ways to defeat the virus, Perilla said. Schulten, who died in October 2016, pioneered the application of molecular dynamics simulations to study large biological systems. He called the method "computational microscopy." The capsid simulation was performed on the Department of Energy's Titan supercomputer. Analyzing the data required a second supercomputer, Blue Waters, at the National Center for Supercomputing Applications at the U. of I. The HIV capsid is made up of hundreds of identical proteins arrayed in a network of six-sided and five- sided structures, each with a tiny pore at its center. The capsid contains the virus's genetic material, The genetic material of the HIV virus is encased in hiding it from host cell defenses. It also transports multiple structures that hide it from the host immune the virus to the cell nucleus, which it must infiltrate system. The capsid, in blue, protects the virus after it to complete infection. enters a cell and shuttles it to the nucleus, where it completes the process of infection. Credit: Juan Perilla It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle. -
HIV Structure by A&U
aumag.org http://aumag.org/wordpress/2013/07/29/hiv-structure/ HIV Structure by A&U Small Protein, Big Picture HIV capsid structure. Image by Klaus Schulten In order for HIV to replicate, the virus needs to carry its genetic material into new cells and then, once inside, to release it. This process is made possible in part by a protein shell: the HIV capsid, which functions to both protect the genetic material and then, at the right time, make it accessible. This makes the capsid an ideal antiviral target. One of the keys of disrupting this function is knowing the precise chemical structure of the HIV-1 capsid, and researchers, as reported in the journal Nature, have done just that. Up till now, scientists have been able to glimpse individual parts of the capsid but never a detailed molecular map of its whole, whose cone-shaped structure is formed by a polymorphic assemblage of more than 1,300 identical proteins. A dynamic view of the entire structure in atomic-level detail—namely, the interactions of 64 million atoms— was made possible with the use of the supercomputer Blue Waters at the National Center for Supercomputing Applications at the University of Illinois. Thanks to the largest computer simulation ever run, the digital model was created by researchers Klaus Schulten and Juan Perilla at the University of Illinois, who built on previous research and their own simulations of how the building blocks of the proteins—hexagons and pentagons, arranged in ever-changing patterns—interacted and fit together, and in what numbers. -
Co-Expressed Subunits of Dual Genetic Origin Define a Conserved Supercomplex Mediating Essential Protein Import Into Chloroplasts
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.04.188128. this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ramundo et al. Co-expressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts Silvia Ramundo (1,2), Yukari Asakura (3), Patrice A. Salomé (4), Daniela Strenkert (4,5), Morgane Boone (1), Luke C. M. Mackinder (6), Kazuaki Takafuji (7), Emine Dinc (8), Michèle Rahire(8), Michèle Crèvecoeur (8), Leonardo Magneschi (9), Olivier Schaad (10), Michael Hippler (9,11), Martin C. Jonikas (12,2), Sabeeha Merchant (4,5), Masato Nakai (3,13), Jean-David Rochaix (8,13) and Peter Walter (1,2.13) (1) Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, USA (2) Howard Hughes Medical Institute (3) Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka, Japan (4) Department of Chemistry and Biochemistry, UCLA, Los Angeles, USA (5) Present address: QB3, University of California, Berkeley, USA (6) Department of Biology, University of York, UK (7) Graduate School of Medicine, Osaka University, Osaka, Japan (8) Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland (9) Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany (10) Department of Biochemistry, University of Geneva, Geneva, Switzerland (11) Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan (12) Department of Molecular Biology, Princeton University, USA (13) Corresponding authors: [email protected]; Jean- [email protected]; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.04.188128. -
ED093664.Pdf
DOCUMENT RESUME ED 093 664 SE 017 755 TITLE National Science Foundation Annual Report 1973. INSTITUTION National Science Foundation, Washington, D.C. REPORT NO NSF-74-1 PUB DATE 73 NOTE 127p. AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 ($2.35) EDRS PRICE MF-$0.75 HC-$6.60 PLUS POSTAGE DESCRIPTORS *Aunual Reports; Mathematics Education; *Program Descriptions; Research; *Research Projects; Science Education; Sciences; Scientific Research; Teacher Education IDENTIFIERS *National Science Foundation ABSTRACT Statistics on the allotment of funds and descriptions of activities carried out under the auspices of the National Science Foundation (NSF) in 1973 are reported. Details are provided for activities in the categories of:(1) research project support, (2). national and international programs,(3) research applications, (it): science education research and programs, and (5) science resources and policy studies. Among the appendices are a listing of staff, advisory committee, and panel members; details cf organization changes and appointments; a financial report for 1973; a description of patents resulting from NSF-supported activities; a publications list; and a list of national research centers' contractors. (RE) Ii National Science U.S. DEPARTMENT OF HEALTH, ' EDUCATION 8 WELFARE Foundation NATIONAL INSTITUTE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN MING IT POINTS OF VIEW OR OPINIONS Annual Report 0 STATED DO NOT NECESSARILY REPRE re1 SENT OFFICIAL NATIONAL INSTITUTE OF 90' EDUCATION POSITION OR POLICY. 1973 Letter of Transmittal Washington, D.C. DEAR MR. PRESIDENT: I have the honor to transmit herewith the Annual Report for Fiscal Year 1973 of the National Science Foundation for submission to the Congress as required by the National Science Foundation Act of 1950. -
Biographical References for Nobel Laureates
Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew. -
Blue Waters Computing System
GPU Clusters for HPC Bill Kramer Director of Blue Waters National Center for Supercomputing Applications University of Illinois at Urbana- Champaign National Center for Supercomputing Applications University of Illinois at Urbana-Champaign National Center for Supercomputing Applications: 30 years of leadership • NCSA • R&D unit of the University of Illinois at Urbana-Champaign • One of original five NSF-funded supercomputing centers • Mission: Provide state-of-the-art computing capabilities (hardware, software, hpc expertise) to nation’s scientists and engineers • The Numbers • Approximately 200 staff (160+ technical/professional staff) • Approximately 15 graduate students (+ new SPIN program), 15 undergrad students • Two major facilities (NCSA Building, NPCF) • Operating NSF’s most powerful computing system: Blue Waters • Managing NSF’s national cyberinfrastructure: XSEDE Source: Thom Dunning Petascale Computing Facility: Home to Blue Waters • Blue Waters • 13PF, 1500TB, 300PB • >1PF On real apps • NAMD, MILC, WRF, PPM, NWChem, etc • Modern Data Center • Energy Efficiency • 90,000+ ft2 total • LEED certified Gold • 30,000 ft2 raised floor • Power Utilization Efficiency 2 = 1.1–1.2 20,000 ft machine room gallery Source: Thom Dunning Data Intensive Computing Personalized Medicine w/ Mayo LSST, DES Source: Thom Dunning NCSA’s Industrial Partners Source: Thom Dunning NCSA, NVIDIA and GPUs • NCSA and NVIDIA have been partners for over a decade, building the expertise, experience and technology. • The efforts were at first exploratory and small -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 64 Summer 2013 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield | Prof J Betteridge (Twickenham, 4, Harpole Close, Swanwick, Derbyshire, | Middlesex) DE55 1EW | Dr N G Coley (Open University) [e-mail [email protected]] | Dr C J Cooksey (Watford, Secretary: Prof. J. W. Nicholson | Hertfordshire) School of Sport, Health and Applied Science, | Prof E Homburg (University of St Mary's University College, Waldegrave | Maastricht) Road, Twickenham, Middlesex, TW1 4SX | Prof F James (Royal Institution) [e-mail: [email protected]] | Dr D Leaback (Biolink Technology) Membership Prof W P Griffith | Dr P J T Morris (Science Museum) Secretary: Department of Chemistry, Imperial College, | Mr P N Reed (Steensbridge, South Kensington, London, SW7 2AZ | Herefordshire) [e-mail [email protected]] | Dr V Quirke (Oxford Brookes Treasurer: Dr J A Hudson | University) Graythwaite, Loweswater, Cockermouth, | Prof. H. Rzepa (Imperial College) Cumbria, CA13 0SU | Dr. A Sella (University College) [e-mail [email protected]] Newsletter Dr A Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Dr G P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 64 Summer 2013 Contents From the Editor 2 Obituaries 3 Professor Colin Russell (1928-2013) Peter J.T. -
Electron-Transfer Reactivity of Metalloproteins in Folded, Partially Unfolded, and Completely Unfolded Forms Scott Ichm Ael Tremain Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 Electron-transfer reactivity of metalloproteins in folded, partially unfolded, and completely unfolded forms Scott ichM ael Tremain Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Tremain, Scott ichM ael, "Electron-transfer reactivity of metalloproteins in folded, partially unfolded, and completely unfolded forms " (2002). Retrospective Theses and Dissertations. 487. https://lib.dr.iastate.edu/rtd/487 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
View Responses of Scouts, Scout Leaders, and Scientists Who Were Scouts
ABSTRACT This study of science education in the Boy Scouts of America focused on males with Boy Scout experience. The mixed-methods study topics included: merit badge standards compared with National Science Education Standards, Scout responses to open-ended survey questions, the learning styles of Scouts, a quantitative assessment of science content knowledge acquisition using the Geology merit badge, and a qualitative analysis of interview responses of Scouts, Scout leaders, and scientists who were Scouts. The merit badge requirements of the 121 current merit badges were mapped onto the National Science Education Standards: 103 badges (85.12%) had at least one requirement meeting the National Science Education Standards. In 2007, Scouts earned 1,628,500 merit badges with at least one science requirement, including 72,279 Environmental Science merit badges. ―Camping‖ was the ―favorite thing about Scouts‖ for 54.4% of the boys who completed the survey. When combined with other outdoor activities, what 72.5% of the boys liked best about Boy Scouts involved outdoor activity. The learning styles of Scouts tend to include tactile and/or visual elements. Scouts were more global and integrated than analytical in their thinking patterns; they also had a significant intake element in their learning style. ii Earning a Geology merit badge at any location resulted in a significant gain of content knowledge; the combined treatment groups for all location types had a 9.13% gain in content knowledge. The amount of content knowledge acquired through the merit badge program varied with location; boys earning the Geology merit badge at summer camp or working as a troop with a merit badge counselor tended to acquire more geology content knowledge than boys earning the merit badge at a one-day event. -
Photosynthesis and the Web: 2008
Photosynth Res DOI 10.1007/s11120-007-9188-7 REVIEW Photosynthesis and the Web: 2008 Larry Orr Æ Govindjee Received: 25 April 2007 / Accepted: 25 April 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The World Wide Web has become an impor- Introduction tant resource for public awareness and for educating the world’s population, including its political leaders, students, The World Wide Web (WWW) has become a very researchers, teachers, and ordinary citizens seeking infor- important resource for public awareness and for educating mation. Relevant information on photosynthesis-related the world’s population, including its political leaders, stu- web sites is grouped into several categories: (1) group sites, dents, researchers, teachers, and ordinary citizens seeking (2) sites by subject, (3) individual researcher’s sites, (4) information. In 1999, we wrote a short survey of the var- sites for educators and students, and (5) other useful sites. ious photosynthesis sites found on the web (Orr and Gov- indjee 1999). Although many fine sites were found and Keywords Internet Á K-12 education Á World Wide Web discussed, the number of sites was rather limited due to the inexperience of scientists with hypertext markup language Abbreviations (HTML), lack of reliable web server hardware, constantly ASU Arizona State University changing web addresses, and difficulty in using the search HTML Hyper Text Markup Language engines available at the time. Within a few years the web ISPR International Society of Photosynthesis Research had grown exponentially, many more sites had appeared NCSA National Center for Supercomputing and were much easier to find as web search engines ma- Applications tured. -
Liberal Arts Science $600 Million in Support of Undergraduate Science Education
Janelia Update |||| Roger Tsien |||| Ask a Scientist SUMMER 2004 www.hhmi.org/bulletin LIBERAL ARTS SCIENCE In science and teaching— and preparing future investigators—liberal arts colleges earn an A+. C O N T E N T S Summer 2004 || Volume 17 Number 2 FEATURES 22 10 10 A Wellspring of Scientists [COVER STORY] When it comes to producing science Ph.D.s, liberal arts colleges are at the head of the class. By Christopher Connell 22 Cells Aglow Combining aesthetics with shrewd science, Roger Tsien found a bet- ter way to look at cells—and helped to revolutionize several scientif-ic disciplines. By Diana Steele 28 Night Science Like to take risks and tackle intractable problems? As construction motors on at Janelia Farm, the call is out for venturesome scientists with big research ideas. By Mary Beth Gardiner DEPARTMENTS 02 I N S T I T U T E N E W S HHMI Announces New 34 Investigator Competition | Undergraduate Science: $50 Million in New Grants 03 PRESIDENT’S LETTER The Scientific Apprenticeship U P F R O N T 04 New Discoveries Propel Stem Cell Research 06 Sleeper’s Hold on Science 08 Ask a Scientist 27 I N T E R V I E W Toward Détente on Stem Cell Research 33 G R A N T S Extending hhmi’s Global Outreach | Institute Awards Two Grants for Science Education Programs 34 INSTITUTE NEWS Bye-Bye Bio 101 NEWS & NOTES 36 Saving the Children 37 Six Antigens at a Time 38 The Emergence of Resistance 40 39 Hidden Potential 39 Remembering Santiago 40 Models and Mentors 41 Tracking the Transgenic Fly 42 Conduct Beyond Reproach 43 The 1918 Flu: Case Solved 44 HHMI LAB BOOK 46 N O T A B E N E 49 INSIDE HHMI Dollars and Sense ON THE COVER: Nancy H.