Review of the Biology of Melittobia Acasta (Walker) (Hymenoptera: Eulophidae) and Additions on Development and Sex Ratio of the Species

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Biology of Melittobia Acasta (Walker) (Hymenoptera: Eulophidae) and Additions on Development and Sex Ratio of the Species Caribbean Journal of Science, Vol. 40, No. 1, 52-61, 2004 Copyright 2004 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Review of the Biology of Melittobia acasta (Walker) (Hymenoptera: Eulophidae) and Additions on Development and Sex Ratio of the Species JORGE M. GONZÁLEZ1,JORGE B. TERÁN2 AND ROBERT W. MATTHEWS1 1University of Georgia, Department of Entomology, Athens, Georgia 30602, USA 2Universidad Central de Venezuela, Facultad de Agronomı´a, Instituto de Zoologı´a Agrı´cola, Apdo. 4579, Maracay, Aragua, Venezuela. Corresponding author: [email protected] ABSTRACT.—A list of known hosts of Melittobia acasta and different biological aspects presented in previous literature are summarized and clarified. Development, sex ratio, and offspring production, on wild, facultative, and factitious hosts, and size of stages at different temperatures are shown. In general, devel- opment time is equivalent and similar to that of other Melittobia species; however, as temperature rises development time decreases. Sex ratio oscillates between 96 to 98% female depending on the host, falling into the expected percentage for most species in the genus. Total offspring numbers were similar to those produced by other Melittobia species using the same hosts. KEYWORDS.—development, sex ratio, offspring production INTRODUCTION bus, and honeybees (Apis mellifera), some re- search has targeted control aspects (Alford Melittobia wasps are gregarious ectopara- 1975; Dahms 1984b; Doroshina 1990; Erick- sitoids of wasps and bees especially of son & Medenwald 1979; Farkas & Szalay those that build mud nests. Before Dahms’ 1985; Fye 1965; Herting 1977; Holm 1960; (1984a) revision, the genus consisted of one Holm & Skou 1972; Husband & Brown species native to Europe (M. acasta), two 1976; Jelinski & Wojtowski 1984; Kalinin & native to North America (M. chalybii and M. Molchanov 1987; MacFarlane & Donovan megachilis), and a few others from Australia 1989; MacFarlane & Griffin 1994; MacFar- and eastern Asia. After this revision the lane & Palma 1987; MacFarlane et al. 1994; number of species increased to 14 world- Maeta 1978, 1985, 1999; Packard 1864; Pou- wide. Although M. acasta remained the vreau 1973; Santis 1981; Schmid-Hempel only European species, Dahms also re- 1998, 2001; Smith 1853; Stolvov & Palevich corded it from Canada, Japan, New Zeal- 1988; Thompson 1946; Torchio 1963; and, and South America. For North Valkeila 1959; Wael et al. 1993, 1995; Zerova America, species increased to eight, includ- et al. 1986). ing M. acasta. Other studies emphasized, evolutionary, Prior to Dahms’ work, for U.S. species morphological, biological and behavioral the name mostly used in the literature was aspects, especially those related to court- M. chalybii, but these identifications were ship, with M. acasta serving as a model or often erroneous, and as many as 4 species compared with other species (Altson 1920; were confused as one (Gonza´lez and Mat- Assem 1975, 1976a, 1976b, 1985; Assem & thews 2002). Likewise, some confusion ex- Maeta 1978; Assem et al. 1982; Balfour- ists for records of M. acasta. Browne 1922; Borgia 1980; Dahms 1984b; Melittobia acasta is reported as a parasite Doroshina 1989; Gonza´lez 1994a, 1994b; or hyperparasite of members of various or- Gonza´lez & Matthews 2002; Gonza´lez & ders, including Hymenoptera, Diptera, Tera´n 2001; Gonza´lez et al. 1996, 1999, 2004; Lepidoptera and Coleoptera (Table 1). Be- Klunker & Fabritius 1992; Lapp 1994; Lith cause it sometimes also attacks bees used 1955; Malyshev 1968; Nong & Sailer 1986; for crop pollination such as Megachile, Bom- Parker & Thompson 1928; Picard 1922, 52 MELITTOBIA ACASTA (HYMENOPTERA) 53 TABLE 1. Reported hosts of Melittobia acasta (Walker) Host group Countries Reference Social Bees (Bombus spp.; Apis Great Britain; New Zealand Alford 1975; Balfour-Browne 1922; spp.) Erickson & Medenwald 1979; Hobbs & Krunic 1971; MacFarlane & Donovan 1989; MacFarlane et al. 1994; Valkeila 1959; Wael et al. 1993, 1995 Parasitic Bees (Psythirus spp., Great Britain; Germany Alford 1975; Wolff & Krausse 1922 Stelis spp.) Solitary Bees (Anthophora spp., Great Britain; Russia; USA; New Balfour-Browne 1922; Doroshina Chalicodoma sp., Heriades spp.; Zealand; Japan; Finland 1989, 1990; Farkas & Szalay Anthidium sp.; Megachile spp.; 1985; Herting 1977; Holm & Osmia spp.) Skou 1972; MacFarlane & Donovan 1989; Maeta 1985; Smith 1853; Thompson 1950a; Valkeila 1959 Mud dauber wasps (Trypoxylon Great Britain; Cuba; Venezuela; Balfour-Browne 1922; Dahms spp., Sceliphron spp.) Japan 1984b; Gonza´lez 1994a, 1994b; Gonza´lez & Tera´n 1996; Gonza´lez et al 2004; Maeta 1985 Parasitic wasps (Alysia Great Britain; Japan; New Altson 1920; Balfour-Browne 1922; manducator; Monodontomerus Zealand; Germany Dahms 1984b; Donovan 1989; spp.; Sinophorus turionus; Maeta & Yamane 1974; Wolff & Sphecophaga vesparum, Chrysis Krausse 1921, 1922; Husain & spp.) Khan 1986; Thompson 1950a Other solitary wasps Germany; Finland Herting 1977; Lith 1955; Wolff & (Ancistrocerus spp., Odynerus Krausse 1922; Malyshev 1911, spp. 1968 Social wasps Great Britain; Japan Bouc˘ek 1959; Maeta 1985; Maeta & Yamane 1974 Flies and parasitic flies (Musca Great Britain; Japan Dahms 1984b; Graham-Smith spp.; Neobellieria spp.; 1916, 1919; Herting 1978; Maeta Sarcophaga spp.; Calliphora & Yamane 1974; Waterston 1917 spp.; Anthrax spp.; Metagonistylum minense; Paratheresia claripalpis) Lepidoptera Great Britain Herting 1975; Morley & Rai; Thompson 1950b Coleoptera Czechoslovakia Bouc˘ek 1959 1923; Schmid-Hempel 1998, 2001; Ranger ing species identity in Melittobia. Results 1996). will help to promote nomenclatural stabil- Lists of synonymies of M. acasta are in ity and thereby facilitate future work on Boucˇek & Graham (1978a, 1978b); Dalla this interesting genus. Here we focus on the Torre (1898); Dahms (1984a); Domenichini widespread M. acasta. (1966); Hansson (1991); Holm (1960); Kalina (1989); Kostjukov (1978); La Salle (1993); Peck (1963); and Schmiedeknecht (1909). MATERIALS AND METHODS Through careful reading of the older pri- mary literature coupled with study of mu- In order to compare the status, distribu- seum voucher materials and controlled tion, and other aspects related to the biol- laboratory studies, we are attempting to ogy of M. acasta, a thorough literature re- untangle some of the confusion surround- view was done. Laboratory studies were 54 J. M. GONZA´ LEZ, ET AL. initiated using M. acasta originally collected All experiments using S. fistularium as in Venezuela (Assays 1-4) or California, hosts were conducted in climatically con- U.S.A. (Assay 4). Unless otherwise noted, trolled chambers at Instituto de Zoolog´ıa cultures were established in 2-dram vials Agr´ıcola, Universidad Central de Venezu- and maintained at 25°C and 70% RH. ela, Maracay, Venezuela. Experiments with Assay 1: In order to see if hosts [Sceliph- other hosts (assay 4) were done in incuba- ron fistularium (Hymenoptera: Sphecidae)] tors at University of Georgia, Athens, Geor- could survive and develop if parasitoids gia, U.S.A. were removed, individual mated females of M. acasta were allowed to lay about 100 eggs/host (n=100). Females were then re- RESULTS moved and a few days later developing third instar M. acasta larvae were removed Although some authors (Eickwort 1971, from every host. 1973; Hobbs & Krunic 1971; Holm 1960; Assay 2: To assess whether temperature Husband & Brown 1976; MacFarlane & had any influence on size, regular cultures Pengelly 1977; Maeta & Yamane 1974; were established on S. fistularium at differ- Newport 1849a, 1849b, 1852a, 1852b, 1853; ent temperatures (15°,20°,25°,30°, and Packard 1864; Spradbery 1973; Thomson 35°C) and 70% RH. Length and width of 1878; Wolff & Krausse 1921) mentioned eggs, all larval instars, and pupae were Melittobia or related species in their work, measured of a sample from the whole off- after careful analysis of those works and spring produced (Brood size approxi- available voucher specimens we conclude mately 400-500 individuals per host; that they were often working on (or found) Sample size: n=39 for each stage and tem- M. acasta (Dahms 1984a; Gonza´lez & Mat- perature). Egg widths were measured at thews 2002). two places (small and large width) because When females of M. acasta are presented of their “pear like” shape. Larval width was with a suitable host (i.e., Sceliphron spp., measured at the mid part of the body, and Trypoxylon spp.), they wander around it, pupae were measured at the junction of the and after some time spent (1-48 h) “assess- thorax and abdomen. Measurements were ing” the host, they puncture the host’s exo- taken using a stereoscope adapted with an cuticle with their ovipositor. After a few ocular micrometer. seconds, hemolymph starts to ooze from Assay 3: To study duration of each life the wound, upon which the female then stage and instar of M. acasta, parasitized S. feeds. fistularium hosts were maintained at vari- Females become distinctly physogastric ous temperatures (15°,20°,25°,30°, and 12-48 hours after first feeding. Beginning 12 35°C) and 70% RH (n=20/ each tempera- to 24 hours after feeding, most females start ture). Observations were made every 12 laying eggs (Table 2). Eggs are coated with hours and the developmental stage was re- a sticky substance that allows them to ad- corded. Sample individuals were removed here to the host and to other eggs. Eggs are (see assay 2) for measurements and to de- normally laid in batches of 4 to 12, however termine if they
Recommended publications
  • Cavity-Nest Boxes for Solitary Bees: a Century of Design and Research J
    Cavity-nest boxes for solitary bees: a century of design and research J. Scott Macivor To cite this version: J. Scott Macivor. Cavity-nest boxes for solitary bees: a century of design and research. Apidologie, 2017, 48 (3), pp.311-327. 10.1007/s13592-016-0477-z. hal-02973424 HAL Id: hal-02973424 https://hal.archives-ouvertes.fr/hal-02973424 Submitted on 21 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:311–327 Review article * INRA, DIB and Springer-Verlag France, 2016 DOI: 10.1007/s13592-016-0477-z Cavity-nest boxes for solitary bees: a century of design and research J. Scott MACIVOR Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A5, Canada Received 25 May 2016 – Revised 3 September 2016 – Accepted 26 September 2016 Abstract – A variety of solitary bee species that naturally nest in wood and plant stems aboveground also readily accept nest boxes, which are human-made devices that aggregate these nesting conditions. Nest boxes are sheltered bundles of hollow plant stems, bamboo or reeds, and holes drilled into wood or cavities made of other materials such as glass or polystyrene.
    [Show full text]
  • United States National Museum Bulletin 276
    ,*f»W*»"*^W»i;|. SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY UNITED STATES NATIONAL MUSEUM BULLETIN 276 A Revision of the Genus Malacosoma Hlibner in North America (Lepidoptera: Lasiocampidae): Systematics, Biology, Immatures, and Parasites FREDERICK W. STEHR and EDWIN F. COOK SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1968 PUBLICATIONS OF THE UNITED STATES NATIONAL MUSEUM The scientific publications of the United States National Museum include two series. Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the field of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 276 of the Bulletin series.
    [Show full text]
  • Arboreal Arthropod Assemblages in Chili Pepper with Different Mulches and Pest Managements in Freshwater Swamps of South Sumatra, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3065-3074 DOI: 10.13057/biodiv/d220608 Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia SITI HERLINDA1,2,3,♥, TITI TRICAHYATI2, CHANDRA IRSAN1,2,3, TILI KARENINA4, HASBI3,5, SUPARMAN1, BENYAMIN LAKITAN3,6, ERISE ANGGRAINI1,3, ARSI1,3 1Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia. Tel.: +62-711-580663, Fax.: +62-711-580276, ♥email: [email protected] 2Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 3Research Center for Sub-optimal Lands, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 4Research and Development Agency of South Sumatera Province. Jl. Demang Lebar Daun No. 4864, Pakjo, Palembang 30137, South Sumatra, Indonesia 5Department of Agricultural Engineering, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia 6Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia Manuscript received: 13 April 2021. Revision accepted: 7 May 2021. Abstract. Herlinda S, Tricahyati T, Irsan C, Karenina T, Hasbi, Suparman, Lakitan B, Anggraini E, Arsi. 2021. Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia. Biodiversitas 22: 3065-3074. In the center of freshwater swamps in South Sumatra, three different chili cultivation practices are generally found, namely differences in mulch and pest management that can affect arthropod assemblages.
    [Show full text]
  • Hymenoptera: Eulophidae)
    November - December 2008 633 ECOLOGY, BEHAVIOR AND BIONOMICS Wolbachia in Two Populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae) CLAUDIA S. COPELAND1, ROBERT W. M ATTHEWS2, JORGE M. GONZÁLEZ 3, MARTIN ALUJA4 AND JOHN SIVINSKI1 1USDA/ARS/CMAVE, 1700 SW 23rd Dr., Gainesville, FL 32608, USA; [email protected], [email protected] 2Dept. Entomology, The University of Georgia, Athens, GA 30602, USA; [email protected] 3Dept. Entomology, Texas A & M University, College Station, TX 77843-2475, USA; [email protected] 4Instituto de Ecología, A.C., Ap. postal 63, 91000 Xalapa, Veracruz, Mexico; [email protected] Neotropical Entomology 37(6):633-640 (2008) Wolbachia en Dos Poblaciones de Melittobia digitata Dahms (Hymenoptera: Eulophidae) RESUMEN - Se investigaron dos poblaciones de Melittobia digitata Dahms, un parasitoide gregario (principalmente sobre un rango amplio de abejas solitarias, avispas y moscas), en busca de infección por Wolbachia. La primera población, provenía de Xalapa, México, y fue originalmente colectada y criada sobre pupas de la Mosca Mexicana de la Fruta, Anastrepha ludens Loew (Diptera: Tephritidae). La segunda población, originaria de Athens, Georgia, fue colectada y criada sobre prepupas de avispas de barro, Trypoxylon politum Say (Hymenoptera: Crabronidae). Estudios de PCR de la región ITS2 confi rmaron que ambas poblaciones del parasitoide pertenecen a la misma especie; lo que nos provee de un perfi l molecular taxonómico muy útil debído a que las hembras de las diversas especies de Melittobia son superfi cialmente similares. La amplifi cación del gen de superfi cie de proteina (wsp) de Wolbachia confi rmó la presencia de este endosimbionte en ambas poblaciones.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Redalyc.Distribution and Host Records of Melittobia (Hymenoptera: Eulophidae) from Mexico
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González, Jorge M.; Matthews, Robert W.; Bradleigh Vinson, S. Distribution and host records of Melittobia (Hymenoptera: Eulophidae) from Mexico Revista Mexicana de Biodiversidad, vol. 79, núm. 2, diciembre, 2008, pp. 529-531 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42511935026 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 79: 529- 531, 2008 Nota Científi ca Distribution and host records of Melittobia (Hymenoptera: Eulophidae) from Mexico Distribución y huéspedes de Melittobia (Hymenoptera: Eulophidae) en México Jorge M. González1*, Robert W. Matthews2 and S. Bradleigh Vinson1 1Texas A & M. University, Department of Entomology, Entomology Research Laboratory, College Station, Texas 77843-2475, USA. 2University of Georgia, Department of Entomology, Athens, Georgia 30602, USA. *Correspondent: [email protected] Abstract. Specimens of a parasitoid wasp attacking pupae of Anastrepha ludens (Loew) in Mexico were identifi ed as Melittobia digitata Dahms, and after a revision of several worldwide insect collections, M. australica Girault was also found to be present in Mexico. Distribution, diagnosis, hosts and collection locations are given for both species. The possibility that M. acasta (Walker) is also present in Mexico is discussed. Key words: Eulophidae, Melittobia australica, M. digitata, M. acasta, Anastrepha ludens, Mexico, distribution. Resumen. Se identifi caron como Melittobia digitata Dahms ejemplares de un parasitoide atacando pupas de Anastrepha ludens (Loew) proveniente de México.
    [Show full text]
  • The Entomofauna on Eucalyptus in Israel: a Review
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 450–460, 2019 http://www.eje.cz doi: 10.14411/eje.2019.046 REVIEW The entomofauna on Eucalyptus in Israel: A review ZVI MENDEL and ALEX PROTASOV Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeTzion 7528809, Israel; e-mails: [email protected], [email protected] Key words. Eucalyptus, Israel, invasive species, native species, insect pests, natural enemies Abstract. The fi rst successful Eucalyptus stands were planted in Israel in 1884. This tree genus, particularly E. camaldulensis, now covers approximately 11,000 ha and constitutes nearly 4% of all planted ornamental trees. Here we review and discuss the information available about indigenous and invasive species of insects that develop on Eucalyptus trees in Israel and the natural enemies of specifi c exotic insects of this tree. Sixty-two phytophagous species are recorded on this tree of which approximately 60% are indigenous. The largest group are the sap feeders, including both indigenous and invasive species, which are mostly found on irrigated trees, or in wetlands. The second largest group are wood feeders, polyphagous Coleoptera that form the dominant native group, developing in dying or dead wood. Most of the seventeen parasitoids associated with the ten invasive Eucalyptus-specifi c species were introduced as biocontrol agents in classical biological control projects. None of the polyphagous species recorded on Eucalyptus pose any threat to this tree. The most noxious invasive specifi c pests, the gall wasps (Eulophidae) and bronze bug (Thaumastocoris peregrinus), are well controlled by introduced parasitoids.
    [Show full text]
  • Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids
    Insects 2012, 3, 1105-1125; doi:10.3390/insects3041105 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids 1, 2 3 4 Jorge Cancino *, Lía Ruíz 1, Mariana Viscarret , John Sivinski and Jorge Hendrichs 1 Programa Moscafrut SAGARPA-IICA, Camino a los Cacahoatales S/N, 30860, Metapa de Domínguez, Chiapas, Mexico; E-Mail: [email protected] 2 Insectario de Investigaciones para Lucha Biológica, Instituto de Microbiología y Zoología CICVyA, INTA, Castelar, 1712 Buenos Aires, Argentina; E-Mail: [email protected] 3 Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; E-Mail: [email protected] 4 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; [email protected]; Tel./Fax: +52-962-64-35059. Received: 7 August 2012; in revised form: 28 August 2012 / Accepted: 17 October 2012 / Published: 25 October 2012 Abstract: The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps.
    [Show full text]
  • Status of the Potentially Invasive Asian Species Sceliphron Deforme in Europe, and an Update on the Distribution of S. Curvatum (Hymenoptera: Sphecidae)
    Acta entomologica serbica, 2011, 16(1/2): 91-114 UDC 595.79(4) STATUS OF THE POTENTIALLY INVASIVE ASIAN SPECIES SCELIPHRON DEFORME IN EUROPE, AND AN UPDATE ON THE DISTRIBUTION OF S. CURVATUM (HYMENOPTERA: SPHECIDAE) ALEKSANDAR ĆETKOVIĆ1*, MIKHAIL V. MOKROUSOV2, MILAN PLEĆAŠ1, PETR BOGUSCH3, DRAGAN ANTIĆ1, LJILJANA ĐOROVIĆ-JOVANOVIĆ4, JASMINA KRPO-ĆETKOVIĆ1 and MARKO KARAMAN5 1 University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia * E-mail: [email protected] 2 International Independent University of Environmental and Political Sciences, Faculty of Ecology, Nizhegorodskaya str., 5, Nizhniy Novgorod 603109, Russia E-mail: [email protected] 3 University of Hradec Králové, Department of Biology, Rokitanského 62, CZ-500 03 Hradec Králové, Czech Republic E-mail: [email protected] 4 O.Š. “Branislav Nušić”, Zaplanjska 45, 11000 Belgrade, Serbia E-mail: [email protected] 5 Natural History Museum of Montenegro, P.O. Box 374, 81000 Podgorica, Montenegro E-mail: [email protected] Abstract We reviewed the distribution of the two Asian species of the genus Sceliphron Klug, introduced into Europe in the late 1970s to early 1980s: S. (Hensenia) curvatum (Smith) and S. (Hensenia) deforme (Smith). Both species are routinely considered as invasive in Europe, but the status and effects of their (eventual) invasiveness are yet to be documented and evaluated. We had a focus on two areas, the Balkan Peninsula and European Russia, based principally on the study of specimens collected over the last 15 years, but we also reviewed the extensive published evidence (including some very important internet-based records), and for S. curvatum we provided a concise overview of the entire European range.
    [Show full text]
  • Nest Architecture, Life Cycle, and Natural
    Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a montane forest William de O. Sabino, Yasmine Antonini To cite this version: William de O. Sabino, Yasmine Antonini. Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a mon- tane forest. Apidologie, Springer Verlag, 2017, 48 (4), pp.450-460. 10.1007/s13592-016-0488-9. hal- 01681897 HAL Id: hal-01681897 https://hal.archives-ouvertes.fr/hal-01681897 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:450–460 Original article * INRA, DIB and Springer-Verlag France, 2017 DOI: 10.1007/s13592-016-0488-9 Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis ) maculata (Hymenoptera: Megachilidae) in a montane forest 1,2 1 William De O. SABINO , Yasmine A NTONINI 1Laboratório de Biodiversidade—Instituto de Ciências Exatas
    [Show full text]
  • Hymenoptera: Eulophidae)
    The Great Lakes Entomologist Volume 40 Numbers 1 & 2 - Spring/Summer 2007 Numbers Article 6 1 & 2 - Spring/Summer 2007 April 2007 Female Fighting and Host Competition Among Four Sympatric Species of Melittobia (Hymenoptera: Eulophidae) Robert W. Matthews University of Georgia Leif D. Deyrup DHHS Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Matthews, Robert W. and Deyrup, Leif D. 2007. "Female Fighting and Host Competition Among Four Sympatric Species of Melittobia (Hymenoptera: Eulophidae)," The Great Lakes Entomologist, vol 40 (1) Available at: https://scholar.valpo.edu/tgle/vol40/iss1/6 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Matthews and Deyrup: Female Fighting and Host Competition Among Four Sympatric Species 52 THE GREAT LAKES ENTOMOLOGIST Vol. 40, Nos. 1 & 2 FEMALE FIGHTING AND HOST COMPETITION AMONG FOUR SYMPATRIC SPECIES OF MELITTOBIA (HYMENOPTERA: EULOPHIDAE) Robert W. Matthews1 and Leif D. Deyrup2 ABSTRACT Melittobia is a genus of parasitic wasps well known for high levels of inbreeding and violent male combat. Casual observations of groups of sisters of M. femorata placed with hosts revealed a surprising incidence of body muti- lations (broken or missing tarsi, antennae, and wings). Replicated conspecific groups of 1, 2, or 3 females of M. femorata, M. digitata, and M. australica and interspecific groups of M.
    [Show full text]
  • Your Name Here
    HOST LOCATION BY MELITTOBIA DIGITATA DAHMS (HYMENOPTERA: EULOPHIDAE), A LARVAL PARASITOID OF MUD DAUBERS, TRYPOXYLON POLITUM SAY (HYMENOPTERA: SPHECIDAE) by CHRISTIAN SHERLEY ARAÚJO DA SILVA TORRES (Under the Direction of Robert W. Matthews) ABSTRACT Signals helping parasitoids to find hosts often originate from the host and/or its habitats, providing cues for locating hosts that are often cryptic or highly dispersed. Melittobia are gregarious ectoparasitoids, which primarily attack Trypoxylon politum prepupae. How Melittobia locates its host is poorly known, but may involve host-related chemicals. This study investigated the roles of chemical cues and natal rearing effect in host location and recognition by M. digitata. In a small arena, which contained T. politum, Megachile rotundata, Neobelleiria bullata, empty cocoons, or nest mud, all isolated from the parasitoid, M. digitata spent significantly more time on host than on control patches. In olfactometer trials, M. digitata spent significantly more time in fields that contained hosts than on blank controls. Host cocoons elicited a positive response, but cues from nest mud and natal host fidelity were not supported. Results suggest that host- related chemicals act as arrestments for M. digitata females. INDEX WORDS: parasitism, chemoreception, host location, host recognition, olfaction, olfactometer, leafcutter bee, blow fly, mud dauber. HOST LOCATION BY MELITTOBIA DIGITATA DAHMS (HYMENOPTERA: EULOPHIDAE), A LARVAL PARASITOID OF MUD DAUBERS, TRYPOXYLON POLITUM SAY (HYMENOPTERA: SPHECIDAE)
    [Show full text]