G C A T T A C G G C A T genes Article Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity Romy Petroll 1 , Mona Schreiber 1,2 , Hermann Finke 1, J. Mark Cock 3 , Sven B. Gould 1,4 and Stefan A. Rensing 1,5,* 1 Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany;
[email protected] (R.P.);
[email protected] (M.S.); hermann.fi
[email protected] (H.F.);
[email protected] (S.B.G.) 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany 3 Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, CNRS, UPMC University Paris 06, CS 90074, 29688 Roscoff, France;
[email protected] 4 Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany 5 Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108 Freiburg, Germany * Correspondence:
[email protected] Abstract: Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More re- cently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organis- mal complexity. To better understand red algal TAP complexity and evolution, we investigated Citation: Petroll, R.; Schreiber, M.; the TAP family complement of uni- and multi-cellular red algae.