Molecular Phylogeny and Revision of the Genus Netrium (Zygnematophyceae, Streptophyta): Nucleotaenium Gen

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny and Revision of the Genus Netrium (Zygnematophyceae, Streptophyta): Nucleotaenium Gen J. Phycol. 46, 346–362 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00814.x MOLECULAR PHYLOGENY AND REVISION OF THE GENUS NETRIUM (ZYGNEMATOPHYCEAE, STREPTOPHYTA): NUCLEOTAENIUM GEN. NOV.1 Andrey A. Gontcharov2,3 and Michael Melkonian Botanisches Institut, Lehrstuhl I, Universita¨tzuKo¨ln, Gyrhofstr. 15, D-50931 Ko¨ln, Germany Nuclear-encoded SSU rDNA, chloroplast LSU Molecular phylogenetic studies have significantly rDNA, and rbcL genes were sequenced from 53 changed our perception of the relationships among strains of conjugating green algae (Zygnematophy- algal taxa and challenged the importance of many ceae, Streptophyta) and used to analyze phyloge- phenotypic characters traditionally used in algal sys- netic relationships in the traditional order tematics. As a result, the composition and taxo- Zygnematales. Analyses of a concatenated data set nomic structure of many algal taxa are uncertain, (5,220 nt) established 12 well-supported clades in requiring revision based on new monographic work. the order; seven of these constituted a superclade, Species richness and morphological diversity often termed ‘‘Zygnemataceae.’’ Together with genera complicate taxonomic studies, but morphologically (Zygnema, Mougeotia) traditionally placed in the fam- simple taxa revealing only few distinguishing charac- ily Zygnemataceae, the ‘‘Zygnemataceae’’ also ters often provide equal challenges for taxonomic included representatives of the genera Cylindrocystis revision. Both situations apply to the systematics of and Mesotaenium, traditionally placed in the family the conjugating green algae (Zygnematophyceae, Mesotaeniaceae. A synapomorphic amino acid Streptophyta), which comprise >4,000 species of uni- replacement (codon 192, cysteine replaced by cellular, filamentous, or colonial algae currently valine) in the LSU of RUBISCO characterized this classified into 55 genera, six families, and two superclade. The traditional genera Netrium, Cylindro- orders (Mix 1972, 1975, Ru˚ˇzicˇka 1977, Brook and cystis, and Mesotaenium were shown to be para- or Johnson 2002, Gerrath 2003). The large number of polyphyletic, highlighting the inadequacy of pheno- species described sets this class apart from the other typic traits used to define these genera. Species of relatively species-poor lineages of streptophyte green the traditional genus Netrium were resolved as three algae. Members of the Zygnematophyceae are fur- well-supported clades each distinct in the number of ther distinctive in their peculiar mode of sexual chloroplasts per cell, their surface morphology reproduction (i.e., conjugation) and in the absence (structure and arrangement of lamellae) and the of flagellate reproductive stages throughout their position of the nucleus or nuclear behavior during life history. cell division. Based on molecular phylogenetic analy- The orders and families of the Zygnematophy- ses and synapomorphic phenotypic traits, the genus ceae were established on the basis of cell wall ultra- Netrium has been revised, and a new genus, Nucleo- structure and cellular organization (i.e., filamentous taenium gen. nov., was established. The genus Plano- or unicellular), whereas most of the genera have taenium, also formerly a part of Netrium, was been defined by characters of cell morphology, such identified as the sister group of the derived as cell and semicell shape, ornamentation of the cell Roya ⁄ Desmidiales clade and thus occupies a key wall, degree of cell constriction, and, more rarely, position in the evolutionary radiation leading to the chloroplast shape. Most of these morphological most species-rich group of streptophyte green algae. characters are apparently late innovations that occur only in the derived order Desmidiales, which is Key index words: cp LSU rDNA; Netrium; Nucleotae- characterized by ornamented and porous cell walls nium;nuSSUrDNA;phylogeny;Planotaenium; composed of two or more parts (McCourt et al. rbcL; Zygnematales; Zygnematophyceae 2000, Gontcharov et al. 2003, 2004, Hall et al. Abbreviations: BI, Bayesian inference; BP, boot- 2008). The morphological diversity of the Desmidi- strap percentages; ML, maximum likelihood; MP, ales has led to the description of >3,000 species dis- maximum parsimony; NJ, neighbor joining; PP, tributed over 35 genera. Most of these genera, posterior probabilities; rbcL, LSU of RUBISCO however, have previously been regarded as artificial. gene Recent molecular phylogenetic studies that specifi- cally addressed the phylogeny of the Desmidiales and its most species-rich family, Desmidiaceae, fully supported this notion (Denboh et al. 2001, Nam 1Received 3 March 2009. Accepted 17 September 2009. 2Permanent address: Institute of Biology and Soil Science, RUS- and Lee 2001, Gontcharov et al. 2003, Moon and 690022, Vladivostok-22, Russia. Lee 2003, Gontcharov and Melkonian 2008, Hall 3Author for correspondence: e-mail [email protected]. et al. 2008). 346 MOLECULAR PHYLOGENY AND REVISION OF NETRIUM 347 In contrast, the order Zygnematales, comprising pected because Netrium, a genus with only 10 850 species classified in 17 genera that are split described species (Ohtani 1990, Gerrath 1993), is between two families, has received comparatively lit- morphologically relatively uniform, and its identity tle attention. Zygnematalean taxa are indistinct in has never been seriously questioned (West and West their cell wall ultrastructure (the simple cell wall is 1904, Kossinskaja 1952, Prescott et al. 1972, Brook nonfragmented without ornamentation or pores). and Johnson 2002, Gerrath 2003). The taxonomic The two families (Mesotaeniaceae, Zygnemataceae) history of the genus Netrium is briefly summarized were distinguished based on cellular organization: here: originally, Netrium taxa were included in the unicellular forms comprising the family Mesotaenia- genus Penium (Ralfs 1848). Subsequently, they were ceae (five genera and 65 species); and filamentous transferred to the genus Closterium as subgenus Netri- forms, the Zygnemataceae (12 genera with 800 um (Na¨geli 1849) and finally raised to genus level species). Chloroplast shape (stellate, laminate, or by Itzigsohn and Rothe (1856). However, Ralfs’s ribbon-like) was used as the major criterion to dis- classification was often favored (Bre´bisson 1856, de tinguish genera in both families (West and West Bary 1858, Archer 1861, Turner 1892) until 1904, Czurda 1932, Kolkwitz and Krieger 1941, Kos- Lu¨tkemu¨ller (1902) showed that Netrium differs sinskaja 1952, Kadlubowska 1984, Brook and John- from Penium by its smooth, one-piece cell wall lack- son 2002, Gerrath 2003). An apparent similarity in ing pores and the different mode of cell division, chloroplast shapes between filamentous and unicel- observations later confirmed by EM and life-history lular forms was recognized early, but relationships studies (Biebel 1964, Mix 1972). between the corresponding taxa remained specula- Each of the Netrium lineages established through tive. It was assumed that each chloroplast shape had sequence comparisons was distinct in the number of evolved only once, and unicellular (or filamentous, chloroplasts per cell (one, two, and four, respec- depending on the presumed ancestral state) forms tively), a feature affecting the position and behavior arose independently in each lineage characterized of the nucleus during cell division (Pickett-Heaps by a specific chloroplast shape, thus rendering 1975, Jarman and Pickett-Heaps 1990). These find- either the Mesotaeniaceae or the Zygnemataceae ings suggested that the traditional genus Netrium polyphyletic (Randhawa 1959, Yamagishi 1963, Ho- comprises several only distantly related and pheno- shaw and McCourt 1988). Alternatively, others typically distinct lineages (Gontcharov et al. 2004). favored a monophyletic origin of the unicellular or Here, we reinvestigated the molecular phylogeny filamentous taxa in the Zygnematales (West and and taxonomic status of Netrium using an extended West 1904, Prescott et al. 1972), implying extensive taxon sampling of unicellular Zygnematales (Netrium homoplasy in chloroplast shapes. s. l., Cylindrocystis, and Mesotaenium), mostly by isolat- Molecular phylogenetic analyses demonstrated ing new strains from natural populations. To the paraphyletic nature of the order Zygnematales improve phylogenetic resolution, we also extended and rejected the traditional concept of its two fami- the data set by including the chloroplast-encoded lies, Zygnemataceae and Mesotaeniaceae, neither of (cp) LSU rRNA genes in addition to the previously which is monophyletic as their taxa intermixed in a used nuclear-encoded SSU rDNA and rbcL in a con- basal clade of the Zygnematophyceae (McCourt catenated data matrix. Using this new data set et al. 2000, Gontcharov et al. 2003). It was also (5,220 positions), we confirmed that members of revealed that the genera Roya and Netrium, tradi- the traditional genus Netrium formed three robust tional members of Mesotaeniaceae, were only dis- clades in the phylogenetic tree of the Zygnemato- tantly related to other Zygnematales and instead phyceae and fully resolved the relationships among showed affinity to the derived order Desmidiales these clades. A detailed analysis of morphological (McCourt et al. 2000, Gontcharov et al. 2003). Due traits by conventional and confocal LM identified to their plastid morphology (axial, laminate chlo- morphological synapomorphies that characterize roplasts as in many Desmidiales), Roya and Netrium each clade. In consequence, we recognize one novel
Recommended publications
  • Induction of Conjugation and Zygospore Cell Wall Characteristics
    plants Article Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? Charlotte Permann 1 , Klaus Herburger 2 , Martin Felhofer 3 , Notburga Gierlinger 3 , Louise A. Lewis 4 and Andreas Holzinger 1,* 1 Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 2 Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; [email protected] 3 Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; [email protected] (M.F.); [email protected] (N.G.) 4 Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA; [email protected] * Correspondence: [email protected] Abstract: Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means Citation: Permann, C.; Herburger, K.; of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field Felhofer, M.; Gierlinger, N.; Lewis, sample of Spirogyra with numerous conjugating stages was isolated and characterized by molec- L.A.; Holzinger, A. Induction of ular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a Conjugation and Zygospore Cell Wall transfer to artificial pond water and increasing the light intensity to 184 µmol photons m−2 s−1. Characteristics in the Alpine Spirogyra This, however was only possible in early spring, suggesting that the isolated cultures had an inter- mirabilis (Zygnematophyceae, nal rhythm.
    [Show full text]
  • Floristic Survey of Algae in Some Freshwater Habitats of Kohima District, Nagaland (India)
    Journal of Advanced Plant Sciences 2021.11(1): 60-73 60 RESEARCH ARTICLE Floristic survey of Algae in some freshwater habitats of Kohima District, Nagaland (India) Keviphruonuo Kuotsu* and S. K. Chaturvedi Department of Botany, Nagaland University, Lumami-798627, Nagaland, India Received: 20 November 2020 / Revised: 12 April 2021 / Accepted: 30 April 2021 © Botanical Society of Assam 2021 blue green algae (Oinam et al.,2010, Devi et al., Abstract 2010) were reported from Nagaland. Studies was also done from the fresh water bodies (lakes, ponds The present paper deals with the algal flora study of streams and rivers) of Dimapur, Chumukedima, Kohima District, Nagaland, which is located Peren and Wokha districts, 94 algal taxa were between 25024’N - 25099’. N latitude and 94001’E - 0 reported (Das and Adhikary 2012). 94 29 E longitude with an average elevation of 1261m and an area of 1,595 sq. km. In the present Kohima district is the capital of Nagaland with an study, 40 algal taxa were reported where 5 algal taxa area of 1463 sq km and located between 25024’N - belongs to Class Cyanophyceae, 5 algal taxa belongs 25099’N latitude and 94001’E - 94029’E longitude to Class Chlorophyceae, 19 algal taxa belongs to with an average elevation of 1261 m. Algal work on Class Bacilariophyceae, 1 algal taxa belongs to Kohima District has not been reported by any Class Coscinodiscophyceae, 2 algal taxa belongs to workers and so the present study has been carried Class Ulvophyceae and 8 algal taxa belongs to Class out to study the flora and resources of algae on some Zygnematophyceae.
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • New Records and Rare Taxa for the Freshwater Algae of Turkey from the Tatar Dam Reservoir (Elazığ)
    Turkish Journal of Botany Turk J Bot (2018) 42: 533-542 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1710-55 New records and rare taxa for the freshwater algae of Turkey from the Tatar Dam Reservoir (Elazığ) 1, 2 3 3 Memet VAROL *, Saul BLANCO , Kenan ALPASLAN , Gökhan KARAKAYA 1 Department of Basic Aquatic Sciences, Faculty of Fisheries, İnönü University, Malatya, Turkey 2 Institute of the Environment, León, Spain 3 Aquaculture Research Institute, Elazığ, Turkey Received: 28.10.2017 Accepted/Published Online: 03.04.2018 Final Version: 24.07.2018 Abstract: Recently, the number of algological studies in Turkish inland waters has increased remarkably. However, taxonomic and floristic studies on algae in the Euphrates basin are still scarce. This study contributes new information to the knowledge of the Turkish freshwater algal flora. Phytoplankton samples were collected from the Tatar Dam Reservoir in the Euphrates Basin between January 2016 and December 2016. Two taxa were recorded for first time and 14 rare taxa for the freshwater algae of Turkey were identified in this study. The new records belong to the phylum Bacillariophyta, whereas taxa considered as rare belong to the phyla Chlorophyta, Cyanobacteria, Rhodophyta, Charophyta, Euglenophyta, and Bacillariophyta. The morphology and taxonomy of these taxa are briefly described in the paper and original light microscopy illustrations are provided. Key words: Freshwater algae, new records, rare taxa, Tatar Dam Reservoir, Turkey 1. Introduction 2. Materials and methods Algae are the undisputed primary producers in aquatic 2.1. Study area ecosystems. They play also an important role in biological The Tatar Dam Reservoir is located on the border of Elazığ monitoring programs since these organisms reflect the and Tunceli provinces in eastern Anatolia (Figure 1).
    [Show full text]
  • New Desmid Records from High Mountain Lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey
    Turkish Journal of Botany Turk J Bot (2019) 43: 570-583 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1810-71 New desmid records from high mountain lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey 1, 2 Bülent ŞAHİN *, Bülent AKAR 1 Department of Biology Education, Fatih Education Faculty, Trabzon University, Trabzon, Turkey 2 Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey Received: 30.10.2018 Accepted/Published Online: 15.04.2019 Final Version: 08.07.2019 Abstract: The algal flora of 17 lakes and 1 pond in the Artabel Lakes Nature Park were investigated during two summer seasons (2013 and 2016). In total, 26 desmid taxa were found and identified as new records for the desmid flora of Turkey based on their morphotaxonomic characteristics and ecological preferences. The taxa identified belong to the genera Actinotaenium (1), Closterium (1), Cosmarium (15), Micrasterias (1), Spondylosium (1), Staurastrum (5), Teilingia (1), and Tetmemorus (1). Morphotaxonomy, ecology, and distribution of each species were discussed in detail. Key words: Desmids, new records, high mountain lakes, Artabel Lakes Nature Park, Turkey 1. Introduction Desmids are an integral part of benthic habitats of Desmid habitats are exclusively freshwater (Coesel and high mountain lakes; in particular, those of the Northern Meesters, 2007; Kouwets, 2008). Desmids usually prefer Hemisphere (Medvedeva, 2001; Sterlyagova, 2008). In acidic or pH-circumneutral, nutrient-poor, and clear the period from 1998 to 2014, 43 new records of desmid waters (Lenzenweger, 1996; Coesel and Meesters, 2007). species from high mountain lakes in the eastern Black It is well known that members of order Desmidiales Sea Region were identified and published (Şahin, 1998, exhibit great diversity in their external morphology and 2000, 2002, 2007, 2008, 2009; Şahin and Akar, 2007; Akar also have remarkably complex cell symmetry (Lee, 2015).
    [Show full text]
  • Kenneth G. Karol the Lewis B
    Kenneth G. Karol The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies The New York Botanical Garden Bronx, New York 10458-5126 telephone: (718) 817-8615 e-mail: [email protected] Education Ph.D., Plant Biology. 2004. University of Maryland, College Park, MD Bachelor of Science, Botany. 1992. University of Wisconsin, Madison, WI Professional Experience Assistant Curator. 2007-Present. Cullman Program, The New York Botanical Garden, Bronx, NY Doctoral Faculty. 2007-Present. City University of New York, Plant Sciences Ph.D. Subprogram, Lehman College, Bronx, NY Chair - Phycological Section, Botanical Society of America. 2006-Present. Postdoctoral Fellow. 2006-2007. National Institutes of Health - National Research Service Award, Genomics/Biology, University of Washington, Seattle, WA LBNA Guest Researcher. 2005-present. Department of Energy Joint Genome Institute, Walnut Creek, CA Appointment runs concurrently with ongoing genome projects. Research Associate (post-doc). 2004-2006. US National Science Foundation Tree of Life Program, Biology, University of Washington, Seattle, WA Graduate Student. 1998-2004. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD Research Assistant. 1999-2003. US NSF PEET Program, University of Maryland, College Park, MD Graduate Admissions Committee. 2001 & 2002. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD Executive Committee. 1999-2000. Green Plant Phylogeny Research Coordination Group Biological Research Technician. 1997-1998. Laboratory of Molecular Systematics, National Museum of Natural History, Smithsonian Institution, Washington, DC Contract Researcher. 1997. Laboratory of Molecular Systematics, National Museum of Natural History, Smithsonian Institution, Smithsonian Institution, Washington, DC Research Technician. 1993-1996. Biological Sciences, DePaul University, Chicago, IL Visiting Scientist.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Table of Contents
    Table of Contents General Program………………………………………….. 2 – 5 Poster Presentation Summary……………………………. 6 – 8 Abstracts (in order of presentation)………………………. 9 – 41 Brief Biography, Dr. Dennis Hanisak …………………… 42 1 General Program: 46th Northeast Algal Symposium Friday, April 20, 2007 5:00 – 7:00pm Registration Saturday, April 21, 2007 7:00 – 8:30am Continental Breakfast & Registration 8:30 – 8:45am Welcome and Opening Remarks – Morgan Vis SESSION 1 Student Presentations Moderator: Don Cheney 8:45 – 9:00am Wilce Award Candidate FUSION, DUPLICATION, AND DELETION: EVOLUTION OF EUGLENA GRACILIS LHC POLYPROTEIN-CODING GENES. Adam G. Koziol and Dion G. Durnford. (Abstract p. 9) 9:00 – 9:15am Wilce Award Candidate UTILIZING AN INTEGRATIVE TAXONOMIC APPROACH OF MOLECULAR AND MORPHOLOGICAL CHARACTERS TO DELIMIT SPECIES IN THE RED ALGAL FAMILY KALLYMENIACEAE (RHODOPHYTA). Bridgette Clarkston and Gary W. Saunders. (Abstract p. 9) 9:15 – 9:30am Wilce Award Candidate AFFINITIES OF SOME ANOMALOUS MEMBERS OF THE ACROCHAETIALES. Susan Clayden and Gary W. Saunders. (Abstract p. 10) 9:30 – 9:45am Wilce Award Candidate BARCODING BROWN ALGAE: HOW DNA BARCODING IS CHANGING OUR VIEW OF THE PHAEOPHYCEAE IN CANADA. Daniel McDevit and Gary W. Saunders. (Abstract p. 10) 9:45 – 10:00am Wilce Award Candidate CCMP622 UNID. SP.—A CHLORARACHNIOPHTYE ALGA WITH A ‘LARGE’ NUCLEOMORPH GENOME. Tia D. Silver and John M. Archibald. (Abstract p. 11) 10:00 – 10:15am Wilce Award Candidate PRELIMINARY INVESTIGATION OF THE NUCLEOMORPH GENOME OF THE SECONDARILY NON-PHOTOSYNTHETIC CRYPTOMONAD CRYPTOMONAS PARAMECIUM CCAP977/2A. Natalie Donaher, Christopher Lane and John Archibald. (Abstract p. 11) 10:15 – 10:45am Break 2 SESSION 2 Student Presentations Moderator: Hilary McManus 10:45 – 11:00am Wilce Award Candidate IMPACTS OF HABITAT-MODIFYING INVASIVE MACROALGAE ON EPIPHYTIC ALGAL COMMUNTIES.
    [Show full text]
  • Identification of 13 Spirogyra Species (Zygnemataceae) by Traits of Sexual Reproduction Induced Under Laboratory Culture Conditions
    www.nature.com/scientificreports OPEN Identifcation of 13 Spirogyra species (Zygnemataceae) by traits of sexual reproduction induced Received: 16 November 2018 Accepted: 23 April 2019 under laboratory culture conditions Published: xx xx xxxx Tomoyuki Takano1,6, Sumio Higuchi2, Hisato Ikegaya3, Ryo Matsuzaki4, Masanobu Kawachi4, Fumio Takahashi5 & Hisayoshi Nozaki 1 The genus Spirogyra is abundant in freshwater habitats worldwide, and comprises approximately 380 species. Species assignment is often difcult because identifcation is based on the characteristics of sexual reproduction in wild-collected samples and spores produced in the feld or laboratory culture. We developed an identifcation procedure based on an improved methodology for inducing sexual conjugation in laboratory-cultivated flaments. We tested the modifed procedure on 52 newly established and genetically diferent strains collected from diverse localities in Japan. We induced conjugation or aplanospore formation under controlled laboratory conditions in 15 of the 52 strains, which allowed us to identify 13 species. Two of the thirteen species were assignable to a related but taxonomically uncertain genus, Temnogyra, based on the unique characteristics of sexual reproduction. Our phylogenetic analysis demonstrated that the two Temnogyra species are included in a large clade comprising many species of Spirogyra. Thus, separation of Temnogyra from Spirogyra may be untenable, much as the separation of Sirogonium from Spirogyra is not supported by molecular analyses. Spirogyra Link (Zygnemataceae, Zygnematales) is a genus in the Class Zygnematophyceae (Conjugatophyceae), which is a component member of the Infrakingdom Streptophyta1,2. Spirogyra has long been included in high school biology curricula. Te genus is widely distributed in freshwater habitats including fowing water, perma- nent ponds and temporary pools3.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
    ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA.
    [Show full text]
  • Algal Flora of Korea
    Algal Flora of Korea Algal Flora Algal Flora of Korea Volume 6, Number 1 Charophyta: Conjugatophyceae (Desmids I): Zygnematales: Mesotaeniaceae, Desmidiales: Gonatozygaceae, Peniaceae, Closteriaceae, Desmidiaceae Freshwater Green Algae Vol. 6, Vol. No. 1 Freshwater Green Algae Green Freshwater Flora and Fauna of Korea National Institute of Biological Resources Ministry of Environment National Institute of Biological Resources NIBR Ministry of Environment ISBN 978-89-97462-60-5 Russia CB Chungcheongbuk-do CN Chungcheongnam-do HB GB Gyeongsangbuk-do China GG Gyeonggi-do YG GN Gyeongsangnam-do GW Gangwon-do HB Hamgyeongbuk-do JG HN Hamgyeongnam-do HWB Hwanghaebuk-do HN HWN Hwanghaenam-do PB JB Jeollabuk-do JG Jagang-do JJ Jeju-do JN Jeollanam-do PN PB Pyeonganbuk-do PN Pyeongannam-do YG Yanggang-do HWB HWN GW East Sea GG GB (Ulleung-do) Yellow Sea CB CN GB JB GN JN JJ South Sea Algal Flora of Korea Volume 6, Number 1 Charophyta: Conjugatophyceae (Desmids I): Zygnematales: Mesotaeniaceae, Desmidiales: Gonatozygaceae, Peniaceae, Closteriaceae, Desmidiaceae Freshwater Green Algae 2012 National Institute of Biological Resources Ministry of Environment Algal Flora of Korea Volume 6, Number 1 Charophyta: Conjugatophyceae (Desmids I): Zygnematales: Mesotaeniaceae, Desmidiales: Gonatozygaceae, Peniaceae, Closteriaceae, Desmidiaceae Freshwater Green Algae Han Soon Kim Kyungpook National University Copyright ⓒ 2012 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon, 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources.
    [Show full text]