Plastid Genome Evolution ADVANCES in BOTANICAL RESEARCH

Total Page:16

File Type:pdf, Size:1020Kb

Plastid Genome Evolution ADVANCES in BOTANICAL RESEARCH VOLUME EIGHTY FIVE ADVANCES IN BOTANICAL RESEARCH Plastid Genome Evolution ADVANCES IN BOTANICAL RESEARCH Series Editors Jean-Pierre Jacquot Professor, Membre de L’Institut Universitaire de France, Unite´ Mixte de Recherche INRA, UHP 1136 “Interaction Arbres Microorganismes”, Universite de Lorraine, Faculte des Sciences, Vandoeuvre, France Pierre Gadal Honorary Professor, Universite Paris-Sud XI, Institut Biologie des Plantes, Orsay, France VOLUME EIGHTY FIVE ADVANCES IN BOTANICAL RESEARCH Plastid Genome Evolution Volume Editors SHU-MIAW CHAW Biodiversity Research Center, Academia Sinica; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan ROBERT K. JANSEN Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States; Genomics and Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia Academic Press is an imprint of Elsevier 125 London Wall, London, EC2Y 5AS, United Kingdom The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States First edition 2018 Copyright © 2018 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. ISBN: 978-0-12-813457-3 ISSN: 0065-2296 For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals Publisher: Zoe Kruze Acquisition Editor: Sam Mahfoudh Editorial Project Manager: Joanna Collett Production Project Manager: James Selvam Cover Designer: Greg Harris Typeset by SPi Global, India CONTENTS Contributors ix Preface xiii 1. Plastid Autonomy vs Nuclear Control Over Plastid Function 1 Jan de Vries and John M. Archibald 1. Introduction: Endosymbiosis and the Genomic Remnants of Cyanobacteria in Archaeplastida 2 2. Cyanobacterial Genes in Two Genetic Compartments 6 3. Plastid Genomes: Coding Capacity and Functional Diversity 7 4. Role of Genetic Autonomy in Endosymbiosis 11 5. Kleptoplasty and Genetic Semiautonomy of (Stolen) Plastids 13 6. Plastid Autonomy and the Evolution of Land Plants 16 7. Outlook 19 Acknowledgements 20 References 20 2. Lost in the Light: Plastid Genome Evolution in Nonphotosynthetic Algae 29 David R. Smith 1. Introduction 30 2. And Then There Was Light 33 3. Burning Out: The Evolutionary Loss of Photosynthesis 36 4. Genetic Ball and Chain: Plastomes in Colourless Algae 39 5. Adiós ptDNA: The Outright Loss of a Plastome 43 6. Nonphotosynthetic ptDNA: Not so Small After All 46 7. Concluding Thoughts 48 Acknowledgements 49 References 49 Further Reading 53 3. Plastid Genomes in the Myzozoa 55 Sergio A. Muñoz-Gómez and Claudio H. Slamovits 1. Introduction 56 2. The Myzozoa 56 3. The Origin of Myzozoan Plastids 60 v vi Contents 4. Diversity of Plastids in the Myzozoa 61 5. The Plastomes of Myzozoans 68 6. Gene Transfer in Myzozoans 81 7. Conclusions and Future Directions 86 Acknowledgements 87 References 87 4. Comparative Plastid Genomics of Glaucophytes 95 Adrian Reyes-Prieto, Sarah Russell, Francisco Figueroa-Martinez, and Christopher Jackson 1. Introduction 96 2. The Glaucophyta Plastids, Organelles With Ancestral Morphological Traits 98 3. The Genetic Repertoire of the Blue-Green Plastids 103 4. Interspecific Comparative Genomics 110 5. Phylogenomics, the Origin of the Primary Plastids and the Archaeplastida Hypothesis 115 6. The Known Glaucophyte Groups Represent Lineages of Putative Ancient Divergence 117 7. Conclusions 119 References 121 5. Evolution of the Plastid Genomes in Diatoms 129 Mengjie Yu, Matt P. Ashworth, Nahid H. Hajrah, Mohammad A. Khiyami, Mumdooh J. Sabir, Alawiah M. Alhebshi, Abdulrahman L. Al-Malki, Jamal S.M. Sabir, Edward C. Theriot, and Robert K. Jansen 1. Introduction 130 2. Materials and Methods 133 3. Results 137 4. Discussion 146 Acknowledgements 151 Author Contributions 152 References 152 6. Evolution of the Plastid Genome in Green Algae 157 Monique Turmel and Claude Lemieux 1. Introduction 158 2. Classification and Phylogeny of Green Algae 159 3. Plastome Architecture of the Common Ancestor of All Green Algae 164 Contents vii 4. Plastome Evolution in the Chlorophyta 165 5. Plastome Evolution in Streptophyte Algae 182 6. Future Directions 186 References 188 7. Evolution of Gymnosperm Plastid Genomes 195 Shu-Miaw Chaw, Chung-Shien Wu, and Edi Sudianto 1. Introduction 196 2. Sequencing the Plastomes of Gymnosperms 198 3. Plastome Characteristics in Gymnosperms 201 4. Plastome Rearrangements 206 5. Evolution of Nucleotide Substitution Rates 209 6. Plastid Phylogenomics of Gymnosperms 212 7. Conclusions and Future Directions 216 Acknowledgments 216 References 216 8. Aberration or Analogy? The Atypical Plastomes of Geraniaceae 223 Tracey A. Ruhlman and Robert K. Jansen 1. Introduction 224 2. The Great and the Small 225 3. Change or Stay the Same 231 4. Keeping Up With the Rate Race: Acceleration and Coevolution 242 5. Staying in Sync: Hybrid Harmony or Dissonance 251 6. Aberration or Analogy? 254 Acknowledgements 255 References 255 9. Structural Diversity Among Plastid Genomes of Land Plants 263 Jeffrey P. Mower and Trisha L. Vickrey 1. Introduction 264 2. Typical Structure of a Land Plant Plastome 264 3. Conserved Plastomes and Inference of Ancestral Structures 266 4. Structural Diversity of the Plastome Among Plants 270 5. Functional Effect of Structural Change 277 6. What Is Left in Plastome Structural Research? 281 Acknowledgements 283 References 283 viii Contents 10. Plastome Phylogenetics: 30 Years of Inferences Into Plant Evolution 293 Matthew A. Gitzendanner, Pamela S. Soltis, Ting-Shuang Yi, De-Zhu Li, and Douglas E. Soltis 1. Introduction 294 2. The Plastid Genome and Plant Systematics 294 3. Plastome Phylogeny: State of the Tree 300 4. Plastome Phylogenetics: Ongoing Challenges 306 5. Conclusions 307 References 308 11. Molecular Evolution of Plastid Genomes in Parasitic Flowering Plants 315 Susann Wicke and Julia Naumann 1. Introduction 316 2. Plastome Size Diversity in Heterotrophic Land Plants 317 3. Reconstructing and Annotating Divergent Plastomes of Heterotrophs 321 4. Are We Always Dealing With (Pseudo)genes? 324 5. Evolution of Plastome Structure Under Relaxed Selective Constraints 326 6. Functional Reduction Along the Transition to a Nonphotosynthetic Lifestyle 329 7. Evolution of Substitution Rates 332 8. Models of Plastome Degradation 335 9. Conclusions and Future Directions 339 Acknowledgements 340 Glossary 341 References 341 Subject Index 349 Author Index 357 CONTRIBUTORS Abdulrahman L. Al-Malki Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia Alawiah M. Alhebshi Genomics and Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia John M. Archibald Dalhousie University, Halifax, NS; Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, ON, Canada Matt P. Ashworth Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States Shu-Miaw Chaw Biodiversity Research Center, Academia Sinica; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan Jan de Vries Dalhousie University, Halifax, NS, Canada Francisco Figueroa-Martinez CONACyT-Universidad Auto´noma Metropolitana, Mexico City, Mexico Matthew A. Gitzendanner Department of Biology, University of Florida, Gainesville, FL, United States Nahid H. Hajrah Genomics and Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia Christopher Jackson School of Biosciences, University of Melbourne, Melbourne, VIC, Australia Robert K. Jansen Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States; Genomics and Biotechnology Research Group, Faculty of Science, King Abdulaziz University,
Recommended publications
  • Rbcl Marker Based Approach for Molecular Identification of Arthrospira and Dunaliella Isolates from Non-Axenic Cultures
    Journal of Genetics and Genetic Engineering Volume 2, Issue 2, 2018, PP 24-34 ISSN 2637-5370 Rbcl Marker Based Approach for Molecular Identification of Arthrospira and Dunaliella Isolates from Non-Axenic Cultures Akash Patel 1&2, Spandan Chaudhary3, Bakhtiyar Alam Syed2, Bharat Gami1, Pankaj Patel1, Beena Patel1* 1R & D Department, Abellon CleanEnergy Pvt. Ltd. Sydney House, Premchand Nagar Road, Ahmedabad-380054 INDIA 2Department of Biotechnology, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India. 3Xcelris Labs Limited 2nd Floor, Heritage Profile, 22-23, Shrimali Society, Opp. Navrangpura Police Station, Navrangpura, Ahmedabad - 380009, Gujarat, INDIA *Corresponding Author: Beena Patel,R & D Department, Abellon Clean Energy Pvt. Ltd. Sydney House, Premchand Nagar Road, Ahmedabad-380054 INDIA. [email protected] ABSTRACT Population escalation and energy crises have increased the urge to find renewable energy sources with higher sustainability index. Microalgae are potential candidates for biofuel feedstock production without utilizing fertile land and drinking water owing to their efficient oil production pathways and high value bio molecules. Morphological identification of potential microalgae species needs accurate molecular validation due to the versatility in nature, however PCR based molecular identification requires pure and axenic culture of isolates in universal primers based gene targets. In present study, monospecies algal culture were directly used to extract DNA followed by PCR amplification of 18S rDNA gene target using universal primers ITS1F-4R and rbcL gene target using primers designed for species specific gene. rbcL primers successfully amplified specific microalgae gene. Resulting sequences were annotated using multiple sequence alignment with Genebank databse and phylogenetic relationship study. These rbcL gene primers and validated PCR conditions can be used for non-axenic monospecies green microalgae isolates for easy and efficient molecular identification.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]
  • Induction of Conjugation and Zygospore Cell Wall Characteristics
    plants Article Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? Charlotte Permann 1 , Klaus Herburger 2 , Martin Felhofer 3 , Notburga Gierlinger 3 , Louise A. Lewis 4 and Andreas Holzinger 1,* 1 Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 2 Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; [email protected] 3 Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; [email protected] (M.F.); [email protected] (N.G.) 4 Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA; [email protected] * Correspondence: [email protected] Abstract: Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means Citation: Permann, C.; Herburger, K.; of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field Felhofer, M.; Gierlinger, N.; Lewis, sample of Spirogyra with numerous conjugating stages was isolated and characterized by molec- L.A.; Holzinger, A. Induction of ular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a Conjugation and Zygospore Cell Wall transfer to artificial pond water and increasing the light intensity to 184 µmol photons m−2 s−1. Characteristics in the Alpine Spirogyra This, however was only possible in early spring, suggesting that the isolated cultures had an inter- mirabilis (Zygnematophyceae, nal rhythm.
    [Show full text]
  • RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
    RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages.
    [Show full text]
  • Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
    Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage).
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • South West Region
    Regional Services Division – South West Region South West Region ‐ Parks & Wildlife and FPC Disturbance Operations Flora and Vegetation Survey Assessment Form 1. Proposed Operations: (to be completed by proponent) NBX0217 Summary of Proposed Operation: Road Construction and Timber Harvesting New road construction – 3.75km Existing road upgrade – 14.9km New gravel pit construction – 2ha (exploration area) Contact Person and Contact Details: Adam Powell [email protected] 0427 191 332 Area of impact; District/Region, State Forest Block, Coupe/Compartment (shapefile to be provided): Blackwood District South West Region Barrabup 0317 Period of proposed disturbance: November 2016 to December 2017 1 2.Desktop Assessment: (to be completed by the Region) ‐ Check Forest Ecosystem reservation. Forest Ecosystems proposed for impact: Jarrah Forest‐Blackwood Plateau, Shrub, herb and sedgelands, Darling Scarp Y Are activities in a Forest Ecosystem that triggers informal reservation under the FMP? The Darling Scarp Forest Ecosystem is a Poorly Reserved Forest Ecosystem and needs to be protected as an Informal Reserve under the Forest Management Plan (Appendix 11) ‐ Check Vegetation Complexes, extents remaining uncleared and in reservation (DEC 2007/EPA 2006). Vegetation Complex Pre‐European extent (%) Pre‐European extent (Ha) Extent in formal/informal reservation (%) Bidella (BD) 94% 44,898 47% Darling Scarp (DS) Figures not available Corresponds to Darling Scarp Forest Ecosystem extent Gale (GA) 80% 899 17% Jalbarragup (JL) 91% 14,786 32% Kingia (KI) 96% 97,735 34% Telerah (TL) 92% 25,548 33% Wishart (WS2) 84% 2,796 35% Y Do any complexes trigger informal reservation under the FMP? Darling Scarp complex as discussed above Y Are any complexes significant as per EPA regionally significant vegetation? Gale (GA) complex is cleared below the recommended retention of 1,500ha (Molloy et.al 2007) ‐ Check Threatened flora and TEC/PEC databases over an appropriate radius of the disturbance boundary.
    [Show full text]
  • Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
    This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways.
    [Show full text]
  • Norrisiella Sphaerica Gen
    Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico 著者 Ota Shuhei, Ueda Kunihiko, Ishida Ken-ichiro journal or Journal of Plant Research publication title volume 120 number 6 page range 661-670 year 2007-11-01 URL http://hdl.handle.net/2297/7674 doi: 10.1007/s10265-007-0115-y Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico Shuhei Ota1, 2, Kunihiko Ueda1 and Ken-ichiro Ishida2 1Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan 2Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan Running title: Norrisiella sphaerica gen. et sp. nov. Correspondence: Shuhei Ota Laboratory of Plant Systematics and Phylogeny (D508) Institute of Biological Sciences Graduate School of Life and Environmental Sciences University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Japan Tel/Fax: +81 (29) 853-7267 Fax: +81 (29) 853-4533 e-mail: [email protected] 1/29 Abstract A new chlorarachniophyte, Norrisiella sphaerica S. Ota et K. Ishida gen. et sp. nov., is described from the coast of Baja California, Mexico. We examined its morphology, ultrastructure and life cycle in detail, using light microscopy, transmission electron microscopy and time-lapse videomicroscopy. We found that this chlorarachniophyte possessed the following characteristics: (i) vegetative cells were coccoid and possessed a cell wall, (ii) a pyrenoid was slightly invaded by plate-like periplastidial compartment from the tip of the pyrenoid, (iii) a nucleomorph was located near the pyrenoid base in the periplastidial compartment, (iv) cells reproduced vegetatively via autospores, and (v) a flagellate stage was present in the life cycle.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]