Pest Categorisation of Popillia Japonica

Total Page:16

File Type:pdf, Size:1020Kb

Pest Categorisation of Popillia Japonica SCIENTIFIC OPINION ADOPTED: 27 September 2018 doi: 10.2903/j.efsa.2018.5438 Pest categorisation of Popillia japonica EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Ewelina Czwienczek and Alan MacLeod Abstract The Panel on Plant Health performed a pest categorisation of Popillia japonica (Coleoptera: Scarabaeidae) for the EU. P. japonica is a distinguishable species listed in Annex IAII of Council Directive 2000/29/EC. It is native to Japan but established in the USA in the early 20th century. It spreads from New Jersey to most US states east of the Mississippi, some to the west and north into Canada. P. japonica feeds on over 700 plant species. Adults attack foliage and fruit surfaces. They can cause serious injury to tree fruits and soft fruit, vegetable crops, ornamental herbaceous plants, shrubs, vines and trees. Larvae are root feeders regarded as serious pests of lawns and turf, vegetables and nursery stock. Adults emerge during the summer and can fly short distances on warm sunny days. The life cycle is usually completed in one year. In cooler regions, development takes two years. P. japonica occurs in the EU in the Azores (Portugal), Lombardy and Piedmont (Italy) where it is under official control. Adults are suspected of being able to spread on aircraft as hitchhikers, i.e. without host plants. Soil accompanying plants for planting provides a pathway for further introductions. Hosts are widely available within the EU. Climatic conditions across central and parts of southern EU are suitable for development in one year. Across parts of northern Europe development over two years is likely. Without control, impacts could be expected on a range of plants. Phytosanitary measures are available to reduce the likelihood of introduction of P. japonica. All criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. Plants for planting are not necessarily the main means of spread so P. japonica does not satisfy all criteria necessary for it to be regarded as a Union regulated non-quarantine pest (RNQP). © 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. Keywords: hitch hiker, Japanese beetle, pest risk, plant health, plant pest, quarantine Requestor: European Commission Question number: EFSA-Q-2018-00489 Correspondence: [email protected] www.efsa.europa.eu/efsajournal EFSA Journal 2018;16(11):5438 Popillia japonica: Pest categorisation Panel members: Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A. Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen and Lucia Zappala. Acknowledgements: The PLH Panel wishes to thank the following for the support provided to this scientific output: Carsten Behring for providing map (Figure 4). Suggested citation: EFSA Plant Health Panel (EFSA PLH Panel), Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques M-A, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H-H, Van der Werf W, Vicent Civera A, Yuen J, Zappala L, Czwienczek E and MacLeod A, 2018. Scientific Opinion on the pest categorisation of Popillia japonica. EFSA Journal 2018;16(11):5438, 30 pp. https://doi.org/10.2903/j.efsa.2018.5438 ISSN: 1831-4732 © 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. Reproduction of the images listed below is prohibited and permission must be sought directly from the copyright holder: Figure 1: © EPPO; Figure 3: Eurostat / EuroGeographics Association The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union. www.efsa.europa.eu/efsajournal 2 EFSA Journal 2018;16(11):5438 Popillia japonica: Pest categorisation Table of contents Abstract................................................................................................................................................... 1 1. Introduction................................................................................................................................4 1.1. Background and Terms of Reference as provided by the requestor.................................................. 4 1.1.1. Background ................................................................................................................................4 1.1.2. Terms of reference ...................................................................................................................... 4 1.1.2.1. Terms of Reference: Appendix 1................................................................................................... 5 1.1.2.2. Terms of Reference: Appendix 2................................................................................................... 6 1.1.2.3. Terms of Reference: Appendix 3................................................................................................... 7 1.2. Interpretation of the Terms of Reference....................................................................................... 8 2. Data and methodologies .............................................................................................................. 8 2.1. Data........................................................................................................................................... 8 2.1.1. Literature search ......................................................................................................................... 8 2.1.2. Database search ......................................................................................................................... 8 2.2. Methodologies............................................................................................................................. 9 3. Pest categorisation ...................................................................................................................... 10 3.1. Identity and biology of the pest.................................................................................................... 10 3.1.1. Identity and taxonomy................................................................................................................. 10 3.1.2. Biology of the pest ...................................................................................................................... 11 3.1.3. Intraspecific diversity................................................................................................................... 11 3.1.4. Detection and identification of the pest......................................................................................... 11 3.2. Pest distribution .......................................................................................................................... 12 3.2.1. Pest distribution outside the EU.................................................................................................... 12 3.2.2. Pest distribution in the EU............................................................................................................ 14 3.3. Regulatory status ........................................................................................................................ 14 3.3.1. Council Directive 2000/29/EC ....................................................................................................... 14 3.3.2. Legislation addressing the hosts of Popillia japonica....................................................................... 14 3.4. Entry, establishment and spread in the EU .................................................................................... 15 3.4.1. Host range.................................................................................................................................. 15 3.4.2. Entry .......................................................................................................................................... 16 3.4.3. Establishment ............................................................................................................................. 16 3.4.3.1. EU distribution of main host plants ............................................................................................... 17 3.4.3.2. Climatic conditions affecting establishment.................................................................................... 17 3.4.4. Spread ....................................................................................................................................... 19 3.5. Impacts .....................................................................................................................................
Recommended publications
  • La Régulation Naturelle Des Insectes Ravageurs Des Cultures Légumières
    La régulation naturelle des insectes ravageurs des cultures légumières et ses conséquences sur la production : quantification du service fourni et recherche de leviers pour son intensification Xavier Mesmin To cite this version: Xavier Mesmin. La régulation naturelle des insectes ravageurs des cultures légumières et ses con- séquences sur la production : quantification du service fourni et recherche de leviers pour son intensifi- cation. Biologie animale. Agrocampus Ouest, 2018. Français. NNT : 2018NSARC134. tel-01892160 HAL Id: tel-01892160 https://tel.archives-ouvertes.fr/tel-01892160 Submitted on 10 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RÉSUMÉ ABSTRACT La régulation naturelle des insectes ravageurs des cultures légu- Pest natural regulation in vegetable crops and its consequences on mières et ses conséquences sur la production : quantifi cation du ser- crop production: quantifi cation of the service and investigation of vice fourni et recherche de leviers pour son intensifi cation levers for its intensifi cation Le développement d’une agriculture moins dépendante des Developping farming systems that use less pesticides is partly pesticides repose en partie sur la maximisation des services based on the intensifi cation of ecosystem services.
    [Show full text]
  • GIS Handbook Appendices
    Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation
    [Show full text]
  • The Beetles Story
    NATURE The Beetles story They outshine butterflies and moths in the world of insects and are a delight for their sheer variety—from the brilliantly coloured to the abysmally dull. But they have their uses, too, such as in museums, where flesh-eating beetles are used to clean off skeletons. Text & photographs by GEETHA IYER THE GIRAFFE WEEVIL (Cycnotrachelus flavotuberosus). Weevils are a type of beetle and they are a menace to crops. 67 FRONTLINE . MARCH 31, 2017 HOW was this watery planet we so much love born? Was it created by God or born off the Big Bang? While arguments swing between science and religion, several ancient cultures had different and interesting per- spectives on how the earth came to be. Their ideas about this planet stemmed from their observations of nature. People living in close prox- imity to nature develop a certain sen- sitivity towards living creatures. They have to protect themselves from many of these creatures and at the same time conserve the very envi- ronment that nurtures them. So there is constant observation and in- teraction with nature’s denizens, es- pecially insects, the most proliferate among all animal groups that stalk every step of their lives. The logic for creation thus revolves around differ- ent types of insects, especially the most abundant amongst them: bee- WATER BEETLE. The Cherokees believed that this beetle created the earth. tles. Beetles though much detested (Right) Mehearchus dispar of the family Tenebrionidae. The Eleodes beetle of by modern urban citizens are per- Mexico belongs to this family. ceived quite differently by indige- nous cultures.
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Popillia Japonica: Procedures for Official Control
    Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 543–555 ISSN 0250-8052. DOI: 10.1111/epp.12345 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/21(1) National regulatory control systems Systemes de lutte nationaux reglementaires PM 9/21(1) Popillia japonica: procedures for official control Scope Approval and amendment This Standard describes procedures for official control with First approved in 2016-09 the aim of detecting, containing and eradicating Popillia japonica. NPPOs may draw on this guidance when develop- ing national contingency plans for outbreaks of Popillia japonica. Earlier records are likely to be misidentifications and are 1. Introduction most probably Popillia quadriguttata (F.) (EPPO, 2000). Popillia japonica Newman (EPPO Code: POPIJA) (Coleop- Records of the species in China are regarded as invalid or tera: Rutelidae), commonly known as the Japanese beetle, unreliable records. is a highly polyphagous beetle and an EPPO A2 pest (Pot- Within the EPPO region, P. japonica was first identi- ter & Held, 2002; EPPO, 2006). Popillia japonica is listed fied from the island of Terceira in the Azores (PT) in the in Annex IAII of the Directive 2000/29/EC, so any detec- early 1970s, and has since been recorded from the islands tion on consignments entering European Union (EU) Mem- of Faial, Flores, Pico, S~ao Jorge, Corvo and on the west- ber States would be subject to statutory action. Native to ern part of S~ao Miguel (Simoes~ & Martins, 1985; Martins Japan and the far eastern Russian island of Kuril, & Simoes,~ 1986; Vieira, 2008).
    [Show full text]
  • Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs
    20182018 Green RoofsUrban and Naturalist Urban Biodiversity SpecialSpecial Issue No. Issue 1:16–38 No. 1 A. Nagase, Y. Yamada, T. Aoki, and M. Nomura URBAN NATURALIST Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs Ayako Nagase1,*, Yoriyuki Yamada2, Tadataka Aoki2, and Masashi Nomura3 Abstract - Urban biodiversity is an important ecological goal that drives green-roof in- stallation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and mainte- nance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity. Introduction Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006).
    [Show full text]
  • Phylogeography Reveals an Ancient Cryptic Radiation in East-Asian Tree
    Dufresnes et al. BMC Evolutionary Biology (2016) 16:253 DOI 10.1186/s12862-016-0814-x RESEARCH ARTICLE Open Access Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages Christophe Dufresnes1, Spartak N. Litvinchuk2, Amaël Borzée3,4, Yikweon Jang4, Jia-Tang Li5, Ikuo Miura6, Nicolas Perrin1 and Matthias Stöck7,8* Abstract Background: In contrast to the Western Palearctic and Nearctic biogeographic regions, the phylogeography of Eastern-Palearctic terrestrial vertebrates has received relatively little attention. In East Asia, tectonic events, along with Pleistocene climatic conditions, likely affected species distribution and diversity, especially through their impact on sea levels and the consequent opening and closing of land-bridges between Eurasia and the Japanese Archipelago. To better understand these effects, we sequenced mitochondrial and nuclear markers to determine phylogeographic patterns in East-Asian tree frogs, with a particular focus on the widespread H. japonica. Results: We document several cryptic lineages within the currently recognized H. japonica populations, including two main clades of Late Miocene divergence (~5 Mya). One occurs on the northeastern Japanese Archipelago (Honshu and Hokkaido) and the Russian Far-East islands (Kunashir and Sakhalin), and the second one inhabits the remaining range, comprising southwestern Japan, the Korean Peninsula, Transiberian China, Russia and Mongolia. Each clade further features strong allopatric Plio-Pleistocene subdivisions (~2-3 Mya), especially among continental and southwestern Japanese tree frog populations. Combined with paleo-climate-based distribution models, the molecular data allowed the identification of Pleistocene glacial refugia and continental routes of postglacial recolonization. Phylogenetic reconstructions further supported genetic homogeneity between the Korean H.
    [Show full text]
  • Assessment of the Effects of Time, Synthetic and Botanical Insecticides Spray Regimes on the Abundance of Predators in Cowpea Production in Kebbi State of Nigeria
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 7, Issue 5 Ver. IV (May. 2014), PP 87-95 www.iosrjournals.org Assessment Of The Effects Of Time, Synthetic And Botanical Insecticides Spray Regimes On The Abundance Of Predators In Cowpea Production In Kebbi State Of Nigeria. Abdullahi Maikai Murna1 and Ibrahim Salihu Koko2 1Crop Protection Department, College of Agriculture Zuru, Kebbi State, Nigeria. 2Natural Resources Institute,University of Greenwich, Medway Campus, Chatham Maritme, Central Avenue, Chatham, ME4 4TB, UK. Abstract: The effect of time, scouting and calendar application of neem kernel extract (nke) as a bio pesticide and commercial chemical insecticide (30g/l Cypermethrin + 250g/l Dimethoate) on the abundance of predatory insects was investigated using a farmer participatory research in Zuru local government area of Kebbi state of Nigeria.Volunteer farmers planted their favourite cowpea variety IT89KD-245-1 and the insecticides sprays carried out both on weekly (calendar) and scouting based using action threshold of 60% flower infestation/damage commenced at 50% flowering. The result showed that Dipteran predators constituted the majority of the beneficial insects caught, and were mostly Asiliidae and Syrphidae spp. predators’ occurrence was mainly at the late flowering stage. Highly significant difference was found in the number of the beneficial insect between treatments. The species distribution difference between the treatments was also highly significant. Predators were less affected by neem sprays than by chemical insecticide, especially when spray frequency was decreased by scouting. Thus, neem spray as a bio pesticide applied on scouting basis is safe to the beneficial insects therefore, compatible with Integrated Pest Management (IPM).
    [Show full text]
  • Comparing Asian Gypsy Moth
    Annals of the Entomological Society of America, 113(2), 2020, 125–138 doi: 10.1093/aesa/saz037 Advance Access Publication Date: 11 February 2020 Special Collection: Geospatial Analysis of Invasive Insects Special Collection Comparing Asian Gypsy Moth [Lymantria dispar asiatica Downloaded from https://academic.oup.com/aesa/article/113/2/125/5728578 by DigiTop USDA's Digital Desktop Library user on 04 September 2020 (Lepidoptera: Erebidae) and L. dispar japonica] Trap Data From East Asian Ports With Lab Parameterized Phenology Models: New Tools and Questions R. Talbot Trotter III,1,4 Samita Limbu,2 Kelli Hoover,2 Hannah Nadel,3 and Melody A. Keena1, 1U.S. Forest Service, Northern Research Station, 51 Mill Pond Road, Hamden, CT 06514, 2Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, 3USDA Animal and Plant Health Inspection Service, PPQ S & T, 1398 West Truck Road, Buzzards Bay, MA 02542, and 4Corresponding author, e-mail: robert.t.trotter@ usda.gov Disclaimer: The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Subject Editor: Kevin Macaluso Received 21 March 2019; Editorial decision 3 July 2019 Abstract Management of the European gypsy moth [Lymantria dispar dispar (Linnaeus)] in North America has bene- fited from more than a century of research. The East Asian strains of the gypsy moth, however, bring new challenges including multiple subspecies (Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky), broad distributions across heterogeneous habitats, and a lack of data on the variation in the phenology of source populations, which may affect risk.
    [Show full text]
  • Chapter 10. Amphibians of the Palaearctic Realm
    CHAPTER 10. AMPHIBIANS OF THE PALAEARCTIC REALM Figure 1. Summary of Red List categories Brandon Anthony, J.W. Arntzen, Sherif Baha El Din, Wolfgang Böhme, Dan Palaearctic Realm contains 6% of all globally threatened amphibians. The Palaearctic accounts for amphibians in the Palaearctic Realm. CogĄlniceanu, Jelka Crnobrnja-Isailovic, Pierre-André Crochet, Claudia Corti, for only 3% of CR species and 5% of the EN species, but 9% of the VU species. Hence, on the The percentage of species in each category Richard Griffiths, Yoshio Kaneko, Sergei Kuzmin, Michael Wai Neng Lau, basis of current knowledge, threatened Palaearctic amphibians are more likely to be in a lower is also given. Pipeng Li, Petros Lymberakis, Rafael Marquez, Theodore Papenfuss, Juan category of threat, when compared with the global distribution of threatened species amongst Manuel Pleguezuelos, Nasrullah Rastegar, Benedikt Schmidt, Tahar Slimani, categories. The percentage of DD species, 13% (62 species), is also much less than the global Max Sparreboom, ùsmail Uøurtaû, Yehudah Werner and Feng Xie average of 23%, which is not surprising given that parts of the region have been well surveyed. Red List Category Number of species Nevertheless, the percentage of DD species is much higher than in the Nearctic. Extinct (EX) 2 Two of the world’s 34 documented amphibian extinctions have occurred in this region: the Extinct in the Wild (EW) 0 THE GEOGRAPHIC AND HUMAN CONTEXT Hula Painted Frog Discoglossus nigriventer from Israel and the Yunnan Lake Newt Cynops Critically Endangered (CR) 13 wolterstorffi from around Kunming Lake in Yunnan Province, China. In addition, one Critically Endangered (EN) 40 The Palaearctic Realm includes northern Africa, all of Europe, and much of Asia, excluding Endangered species in the Palaearctic Realm is considered possibly extinct, Scutiger macu- Vulnerable (VU) 58 the southern extremities of the Arabian Peninsula, the Indian Subcontinent (south of the latus from central China.
    [Show full text]
  • Landfill Contamination Problems: a General Perspective and Engineering Geology Aspects
    Giornale di Geologia Applicata 1 (2005) 203 –211, doi: 10.1474/GGA.2005-01.0-20.0020 Landfill contamination problems: a general perspective and engineering geology aspects A. Tazioli & G. S. Tazioli Department of "Fisica e Ingegneria dei Materiali e del Territorio" Technical University of the Marches, Ancona, via Brecce Bianche. Italy ABSTRACT. Using isotopic methods for the investigation of leachate contamination has produced good results mainly for the control of the interference between landfill activity processes and the underground groundwater environment. In this paper the results of study performed in several italian landfill sites are presented. The results obtained from the investigated areas show that the knowledge of background values of the environment is basic for pollution purpose. In particular, Oxigen-18, Deuterium and Tritium values have allowed groundwater residence times and location of recharge areas to be identified. After that, the use of tritium as pollution tracer provides information on the presence of leachate contamination earlier and better than chemical changes of the standard pollution parameters. Deuterium and Oxygen-18 values of leachate always appear to be somewhat different with respect to the groundwater values, but they can be used as contamination index only in cases of high fractions of leachate. Key terms: Landfill, Monitoring, Tritium, Environmental isotopes, Leachate, Groundwater, Pollution, Rainwater, Waste, Recharge, Leakage, Aquifer, Chemistry. Introduction The qualitative and quantitative characteristics of the fluxes of leachate and biogas are related to the solid waste and to Groundwater and surface water contamination by sanitary the processes taking place in the landfill. An impact on the landfills has been monitored since 1989 in Italy by using underground environment is generally caused by exit- isotope techniques combined with chemical analyses.
    [Show full text]
  • Zootaxa, Pupal Cases of Nearctic Robber Flies (Diptera: Asilidae)
    ZOOTAXA 1868 Pupal cases of Nearctic robber flies (Diptera: Asilidae) D. STEVE DENNIS, JEFFREY K. BARNES & LLOYD KNUTSON Magnolia Press Auckland, New Zealand D. STEVE DENNIS, JEFFREY K. BARNES & LLOYD KNUTSON Pupal cases of Nearctic robber flies (Diptera: Asilidae) (Zootaxa 1868) 98 pp.; 30 cm. 3 Sept. 2008 ISBN 978-1-86977-265-9 (paperback) ISBN 978-1-86977-266-6 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1868 © 2008 Magnolia Press DENNIS ET AL. Zootaxa 1868: 1–98 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Pupal cases of Nearctic robber flies (Diptera: Asilidae) D. STEVE DENNIS1, JEFFREY K. BARNES2,4 & LLOYD KNUTSON3 11105 Myrtle Wood Drive, St. Augustine, Florida 32086, USA; e-mail: [email protected] 2University of Arkansas, Department of Entomology, 319 Agriculture Building, Fayetteville, Arkansas 72701, USA; e-mail: jbar- [email protected] 3Systematic Entomology Laboratory, United States Department of Agriculture, Washington, D.C.
    [Show full text]