Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned Amefican Mineralogist, Volume 59, pages 876-881, 1974 BOOKREVIEWS STUDIES IN EARTH AND SPACE SCIENCES; A Under petrology and mineralogy there are seven articles '3Alrv-Sirv MEMOIR IN HONOR OF HARRY HAMMOND HESS, ranging from a discussion of disorder in sillima- 1906-1969. Edited by Reginald Shagam and others. Geo- nite and its effect on phase relations of the aluminum silicate logical Society of America Memoir 132, 1972. vii { 683 minerals," by Hugh Greenwood, to "Differentiation trends quartz pages. $22.0O. and parental magmas for anorthositic and mangerite series, Adirondacks, New York," by A. F. Buddington. A Harry Hess would have been pleased with this volume. review of pigeonitic pyroxenes by G. Malcolm Brown con- From mineralogy to lunar geology it spans the full range of firms through structural and experimental thermal studies his own efforts, as well it might be expected to, considering some of Hess's predictions on the processes of subsolidus his influence on its authors. Dynamic and imaginative inter- exsolution and inversion. An article by G. B. Hess discusses pretations of data, his hallmark in life, becorne his legacy "Heat and mass transport during crystallization of the here. It is an exciting book with broad appeal. Stillwater lgneous Complex," a result of collaboration with Tho volume begins with 17 articles on geotectonics. Harry Hess that began many years ago. Topics discussedinclude plate motions and mantle convec- Several articles on deformation of materials and environ- tion, poles of rotation and paleopoles, the origin of litho- mental geology are included. An article by David B' Mac- sphere behind island arcs and the genesisof oceanic crust' the Kenzie dealing with "Peridotite fabrics and velocity ani- origins of active continental margins, continental fracture stropy in the earth's mantle" follows up a line of research zones and majo,r rifts, possible uncoupled convection and initiated by Hess in 1964. Such studies may have the po- the generation of orogenic belts. Most are excellent articles, tential for an interesting new look at the composition and but one that particularly appeals to this writer is "Free- variability of the upper mantle. board of continents through time", by D. U. Wise, describing Finally, four articles on space science explore "Crystalli- a model of the earth that accounts for the nearly constant zation histories of two Apollo 12 basalts" (L. S. Hollister fine adjustment between the volume of ocean basins and and others), "Calcium in chondritic olivine" (R. T. Dodd)' the volume of ocean waters. and the question, "Are lunar rilles inverted eskers?" (C. E' The section on ultrabasic rocks contains eight articles. Top- Helsley). The last note describes the Hess Lunar Crater, ics include dynamic interpretations of the petrology, distri- formally named at the 1970 International Astronomical bution, and emplacement of ultrabasic rocks. There is a Union meeting at Brighton, England. comparison of the Troodos massif with the seismically determined model of oceanic crust, which may yet be found Lvr.rN Gr,ovsn III to consist of partially serpentized peridotite, as Hess sug- Virginia Polytechnic Institute gested. In an elegant summary of the genesis of St. Paul's and State Unioersity Rocks, Melson, Hart, and Thompson conclude that it is an largely upper mantle-derived ultrabasic complex intruded METEORITES AND THEIR ORIGINS. By G. I. H. Mc- m.y. K-Ar apparent age on in the solid state. An 835 Call. John Wiley and Sons, New Yort'. l/73. 352 pages. from these rocks is inconsistent with their near- hornblende $12.95. ness to the Mid-Atlantic Ridge in the current model of sea- floor spreading. On the continents, some remarkable occur- The author has tried "to condense the vast spectrum of rences of explosively generated se4rentine breccia deposits meteoritics into a single readable volume divided described by Lockwood are perhaps more common than the into 23 chapters, and states that this book is intended as a literature suggests.Deformation and metamorphism would text for university students, professional and amateur sci' easily mask their essentially sedimentary nature. In other entists alike. This is indeed a worthwhile intention and, articles a primary peridotite magma is described, and knowing McCall's reputation as a scientist who, over the Alaskan type zoned ultramafic complexes are postulated to years, has contributed extensively to meteoritics, largely by originate by fractional crystallization and flow difterentiation the description of new Australian meteorites, made me read of basaltic magma in the feeder pipes of volcanoes. the book eagerly and with great expectations. Unfortunately, Eleven articles on Caribbean geology continue Hess's pro- the book is a great disappointment and has many serious gram of studies that inspired graduate students at Princeton shortcomings. for nearly a generation. This section includes regional syn- (1) The author's heavy reliance on older textbooks and thesesof the Puerto Rico Trench and negative anomaly belt, review articles rather than on the original literature results crustal evolution, several articles on the southern Carib- in many serious shortcomings and, in particular, in a num- bean region, and an excellent sufirmary by Donnelly on the ber of chapters being sadly out-of-date. For example, Table progression from deep water to subaerial volcanism in the 11 on elemental abundances in meteorites lists data from Virgin Islands. An interesting report on the Venezuelan Levin (1956), who in turn draws heavily from the Nod- Andes provides new data supporting a link between the dacks! Table 15 is similarly out of date. Since those data Appalachian mobile belt and an orogenic sequence under- were obtained, a generation of cosmochemistshas obtained lying the Andean system. new, better numbers with new, improved analytical tech- 876 BOOK REVIEWS 877 pothesis of derivation of mesosiderites by spalling of a silicate material by the agency of iron meteorites from the lunar surface has been given surprising credence in Amer- ica" does not at all reflect the true state of the matter in ths U.S. post-Apollo era. p. 127: Amphoterites are not viewed as part of the hypersthene chondrites (i.e., L-group (2) The author's personal biases and prejudices are very chondrites) any more, but form a separate group, the apparent in the text. This is unfortunate in the case of a Ll-group chondrites. p. 129: Olivine is not absent from beginner's textbook, where the student is supposed to be enstatite chondrites. Important minerals such as sinoite, presented with a balanced account, points with all of view perryite, schreibersite, niningerite, are not listed. There are represented. The author's biases particularly are apparenr other enstatite chondrites besides St. Mark's with good when discussing the origin of lunar and terrestrial craters chondritic texture, p. 13j, 172, 319: Jarosewich (not (chapter 20): his efforts to deny the impact origin of Jaresowich) is consistentlymisspelled. p. 136, 137: Sulfates Caion Diablo-for example, on the basis of its relative are not mentioned. p. I39: It was shown years ago (Keil, 1968) that Pesyanoe does not contain magnesium sulfide (MgS) but ferroan alabandite (Fe,Mn)S. In fact, MgS does not exist as a meteoritic mineral. p. 157: Carbonaceous chondrites do not display comparable metal contents to common chondrites (they have comparable total iron con_ tents). p. 158: New data show no major discrepancybe- tween chondritic and solar iron abundances. primordial meteoritic iron as evidence for impact origin of terrestrial rare gases are not ". virtually absent from the common impact features, are unjustified. In fact, the entire chapter 20 chondrites" (e.g., Pantar, Tabor). p. 162, 163; The pioneer_ is a very biased account, including the quoted (or not ing work of Wasson and coworkers on Ga-Ge groups is quoted) references. further A bias towards neglect of modern not referred to in the text (although there is a reference physico-chemical measurements appears in the much too in the list of references), p. lB2: The light inclusions in brief treatment of trace element, major element, cosmic Allende are exotic in the sense that they formed under ray-produced nuclide, and other data. different physico-chemical conditions than the host. p. 1gg: (3) The book indicates poor familiarity of the author The statement "Never do we find the olivines and pyrox- with the original literature, which has resulted in many enes of the common chondrites, which contain mineral false, half-true, or warped statements of facts, as well as in species containing 20-30 percent of the Fe ion . ." (in the neglect of many important new results. For example, carbonaceouschondrites type II) is wrong. p. 191: No when discussing where meteorites originate (chapter 3), the mention is made of the constrained equilibrium theory of important orbital Monte Carlo type calculations by Arnold, Blander and Adel Gawad (1969) nor of the lightning hy- Anders, Wetherill, and others are not mentioned. One of pothesis of Whipple (1966). p. 206: Olivine-bronzite and the most irnportant recent advances in iron meteorite re- olivine-hypersthene chondrites arc identical to H- and L- search, namely the determination of cooling rates and gro'np chondrites, respectively. p. 209: The statement speculations parent on sizes of meteorite bodies (Goldstein) ". there is some doubt about the validity of probe results are not discussed.p. 55: When discussingmelting crusrs, no of this kind at the present time . .,' (referring to electron reference is made to the classical paper by Ramdohr (1967). microprobe analyses of silicates) is unjustified and not in p. 88: No meteorite has enstatite entirely composed of tune with results published in the modern literature. p. 29O: MgSiOe; there is always some substitution of Fe and Mn von Engelhardt (not von Englehart). for Mg. p. ,,. 89: The statementthat . amphibole, horn- In addition, the book appears hastily written and poorly blende, are not ,'in found at atl .
Recommended publications
  • 21St American Conference on Crystal Growth and Epitaxy (ACCGE-21)
    Program Book 21st American Conference on Crystal Growth and Epitaxy (ACCGE-21) and 18th US Workshop on Organometallic Vapor Phase Epitaxy (OMVPE-18) and 3rd Symposium on 2D Electronic Materials and Symposium on Epitaxy of Complex Oxides July 30 – August 4 1 | P a g e Table of Contents Table of Contents ........................................................................................................... 2 Welcome to Santa Fe, New Mexico………………………………...………………………..3 Maps of Conference Area and Resort ............................................................................ 4 Conference Sponsors & Supporters ............................................................................... 7 Conference Exhibitors .................................................................................................... 7 Conference Organizers .................................................................................................. 8 OMVPE Workshop Committee………………………. ...................................................... 9 AACG Organization (2015-2017) ................................................................................. 10 ACCGE Symposia and Organizers .................................................... ………………….11 Plenary Speakers ............................................................................... ………………….13 Award Recipients ............................................................................... ………………….14 Scope and Purpose of the Conferences ......................................................................
    [Show full text]
  • Epitaxy and Characterization of Sigec Layers Grown by Reduced Pressure Chemical Vapor Deposition
    Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor deposition Licentiate Thesis by Julius Hållstedt Stockholm, Sweden 2004 Laboratory of Semiconductor materials, Department of Microelectronics and Information Technology (IMIT), Royal Institute of Technology (KTH) Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor deposition A dissertation submitted to the Royal Institute of Technology, Stockholm, Sweden, in partial fulfillment of the requirements for the degree of Teknologie Licentiat. TRITA-HMA REPORT 2004:1 ISSN 1404-0379 ISRN KTH/HMA/FR-04/1-SE © Julius Hållstedt, March 2004 This thesis is available in electronic version at: http://media.lib.kth.se Printed by Universitetsservice US AB, Stockholm 2004 ii Julius Hållstedt Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor deposition Laboratory of Semiconductor Materials (HMA), Department of Microelectronics and Information Technology (IMIT), Royal Institute of Technology (KTH), Stockholm, Sweden TRITA-HMA Report 2004:1, ISSN 1404-0379, ISRN KTH/HMA/FR-04/1-SE Abstract Heteroepitaxial SiGeC layers have attracted immense attention as a material for high frequency devices during recent years. The unique properties of integrating carbon in SiGe are the additional freedom for strain and bandgap engineering as well as allowing more aggressive device design due to the potential for increased thermal budget during processing. This work presents different issues on epitaxial growth, defect density, dopant incorporation and electrical properties of SiGeC epitaxial layers, intended for various device applications. Non-selective and selective epitaxial growth of Si1-x-yGexCy (0≤x≤0.30, 0≤y≤0.02) layers have been optimized by using high-resolution x-ray reciprocal lattice mapping.
    [Show full text]
  • Single-Crystal Metal Growth on Amorphous Insulating Substrates
    Single-crystal metal growth on amorphous insulating substrates Kai Zhanga,1, Xue Bai Pitnera,1, Rui Yanga, William D. Nixb,2, James D. Plummera, and Jonathan A. Fana,2 aDepartment of Electrical Engineering, Stanford University, Stanford, CA 94305; and bDepartment of Materials Science and Engineering, Stanford University, Stanford, CA 94305 Contributed by William D. Nix, December 1, 2017 (sent for review October 12, 2017; reviewed by Hanchen Huang, David J. Srolovitz, and Carl Thompson) Metal structures on insulators are essential components in advanced Our method is based on liquid phase epitaxy, in which the electronic and nanooptical systems. Their electronic and optical polycrystalline metal structures are encapsulated in an amor- properties are closely tied to their crystal quality, due to the strong phous insulating crucible, together with polycrystalline seed dependence of carrier transport and band structure on defects and structures of differing material, and heated to the liquid phase. grain boundaries. Here we report a method for creating patterned As the system cools, the metal solidifies into single crystals. single-crystal metal microstructures on amorphous insulating sub- Liquid phase epitaxy has been previously studied in the context of strates, using liquid phase epitaxy. In this process, the patterned semiconductor-on-oxide growth (24–26), but has not been ex- metal microstructures are encapsulated in an insulating crucible, plored for metal growth. We will examine gold as a model system together with a small seed of a differing material. The system is in this study. Gold is an essential material in electronics and heated to temperatures above the metal melting point, followed by plasmonics because of its high conductivity and chemical inertness.
    [Show full text]
  • 6Th International Workshop on Crystal Growth Technology
    GERMANY, JUNE 15 - 19 BERLIN 2014 6th International Workshop on Crystal Growth Technology THE FUTURE OF Advances in bulk crystal growth of semiconductor & photovoltaic materials CRYSTAL GROWTH Optical and laser crystals TECHNOLOGY – Scintillators, piezo- and magnetoelectrics BRINGING NEW Substrates for wide band-gap and oxide semiconductors TECHNOLOGIES TO Growth control, quality assurance, and management of resources INDUSTRIAL GROWTH Crystal shaping and layer transfer technologies APPLICATION Frontiers in crystal growth technology Leibniz Institute for International Organization Crystal Growth (IKZ) for Crystal Growth The Organizing Committee would like to acknowledge support provided by CrysTec GmbH Köpenicker Str. 325 D-12555 Berlin, Germany http://www.crystec.de Deutsche Forschungsgemeinschaft e.V. Kennedyallee 40 53175 Bonn, Germany http://www.dfg.de EFG GmbH Beeskowdamm 6 D-14167 Berlin, Germany http://www.efg-berlin.de Leibniz Institute for Crystal Growth Max-Born-Str. 2 D-12489 Berlin, Germany http://www.ikz-berlin.de PVA TePla AG Im Westpark 10 - 12 35435 Wettenberg, Germany http://www.pvatepla.com STR Group, Inc. Engels av. 27, P.O. Box 89, 194156 St. Petersburg, Russia http://www.str-soft.com Systec Johann-Schöner-Str. 73 D-97753 Karlstadt http://www.systec-sa.de Takatori Corporation European Representative JTA Equipment Technology 34 St Peters Wharf Newcastle upon Tyne, NE6 1TW, UK http://www.jta-ltd.com Umicore Electro-Optic Materials Watertorenstraat 33 B-2250, Olen, Belgium http://eom.umicore.com/en/eom/ IWCGT-6 6th International Workshop on Crystal Growth Technology Berlin, Germany June 15 - 19, 2014 Systec Johann-Schöner-Str. 73 D-97753 Karlstadt http://www.systec-sa.de IWCGT-6 2014 3 4 IWCGT-6 2014 Welcome message Dear participants of the IWCGT-6, a warm welcome to you, and sincere thanks that you take part in this exciting event, the 6th International Workshop on Crystal Growth Technology (IWCGT-6) held at June 15-19, 2014 at the Novotel Am Tiergarten, Berlin, Germany.
    [Show full text]
  • Solid-Phase Epitaxy
    Published in Handbook of Crystal Growth, 2nd edition, Volume III, Part A. Thin Films and Epitaxy: Basic Techniques edited by T.F. Kuech (Elsevier North-Holland, Boston, 2015) Print book ISBN: 978-0-444-63304-0; e-book ISBN: 97800444633057 7 Solid-Phase Epitaxy Brett C. Johnson1, Jeffrey C. McCallum1, Michael J. Aziz2 1 SCHOOL OF PHYSICS, UNIVERSITY OF MELBOURNE, VICTORIA, AUSTRALIA; 2 HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES, CAMBRIDGE, MA, USA CHAPTER OUTLINE 7.1 Introduction and Background.................................................................................................... 318 7.2 Experimental Methods ............................................................................................................... 319 7.2.1 Sample Preparation........................................................................................................... 319 7.2.1.1 Heating.................................................................................................................... 321 7.2.2 Characterization Methods................................................................................................ 321 7.2.2.1 Time-Resolved Reflectivity........................................................................................ 321 7.2.2.2 Other Techniques ....................................................................................................323 7.3 Solid-Phase Epitaxy in Si and Ge .............................................................................................. 323 7.3.1 Structure
    [Show full text]
  • Crystal Shape Engineering
    Crystal Shape Engineering Michael A. Lovette, Andrea Robben Browning, Derek W. Gri±n, Jacob P. Sizemore, Ryan C. Snyder and Michael F. Doherty¤ Department of Chemical Engineering University of California Santa Barbara, CA 93106-5080 USA June 19, 2008 Abstract In an industrial crystallization process, crystal shape strongly influences end-product quality and functionality as well as downstream processing. Additionally, nucleation events, solvent e®ects and polymorph selection play critical roles in both the design and operation of a crystallization plant and the patentability of the product and process. Therefore, investigation of these issues with respect to a priori prediction is and will continue to be an important avenue of research. In this review, we discuss the state-of-the-art in modeling crystallization processes over a range of length scales relevant to nucleation through process design. We also identify opportunities for continued research and speci¯c areas where signi¯cant advancements are needed. ¤To whom correspondence should be addressed. Phone: (805) 893{5309 e{mail: [email protected] 1 Introduction Crystallization from solution is a process used in the chemical industries for the preparation of many types of solids (e.g., pharmaceutical products, chemical intermediates, specialty chemicals, catalysts). Several key properties of the resultant materials originate from this process, including chemical purity and composition, internal structure (polymorphic state), size and shape distribu- tions and defect density (crystallinity). Size and shape distributions impact various solid properties including end-use e±cacy (e.g., bioavailability for pharmaceuticals, reactivity for catalytics1), flowa- bility, wettability and adhesion. In turn, these properties impact down-stream processing e±ciency (e.g., ¯ltering/drying times and the possible need for milling), storage and handling.
    [Show full text]
  • Springer Handbook of Crystal Growth
    Springer Handbook of Crystal Growth Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physi- cal sciences and engineering. The world’s leading experts in the fields of physics and engineer- ing will be assigned by one or several renowned editors to write the chapters comprising each vol- ume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information. The volumes are designed to be useful as readable desk reference books to give a fast and comprehen- sive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibli- ographies. References to extensive sources are provided. HandbookSpringer of Crystal Growth Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath Prasad, Michael Dudley (Eds.) With DVD-ROM, 1320 Figures, 134 in four color and 124 Tables 123 Editors Govindhan Dhanaraj ARC Energy 18 Celina Avenue, Unit 17 Nashua, NH 03063, USA [email protected] Kullaiah Byrappa Department of Geology University of Mysore Manasagangotri Mysore 570 006, India [email protected] Vishwanath Prasad University of North Texas 1155 Union Circle #310979 Denton, TX 76203-5017, USA [email protected] Michael Dudley Department of Materials Science & Engineering Stony Brook University Stony Brook, NY 11794-2275, USA [email protected] ISBN: 978-3-540-74182-4 e-ISBN: 978-3-540-74761-1 DOI 10.1007/978-3-540-74761-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2008942133 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright.
    [Show full text]
  • Fabrication Technology
    Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski growing process Fabrication processes Thermal Oxidation Etching techniques Diffusion 2 Expressions for diffusion of dopant, concentration Ion implantation Photomask generation Photolithography Epitaxial growth Metallization and interconnections, Ohmic contacts Planar PN junction diode fabrication, Fabrication of resistors and capacitors in IC's. 3 INTRODUCTION ¾The microminiaturization of electronics circuits and systems and then concomitant application to computers and communications represent major innovations of the twentieth century. These have led to the introduction of new applications that were not possible with discrete devices. ¾Integrated circuits on a single silicon wafer followed by the increase of the size of the wafer to accommodate many more such circuits served to significantly reduce the costs while increasing the reliability of these circuits. 4 5 WHY SILICON? Semiconductor devices are of two forms (i) Discrete Units (ii) Integrated Units Discrete Units can be diodes, transistors, etc. Integrated Circuits uses these discrete units to make one device. Integrated Circuits can be of two forms (i) Monolithic-where transistors, diodes, resistors are fabricated and interconnected on the same chip. (ii) Hybrid- in these circuits, elements are discrete form and others are connected on the chip with discrete elements externally to those formed on the chip 6 9Two other semiconductors, germanium and gallium arsenide, present special problems while silicon has certain specific advantages not available with the others. 9A major advantage of silicon, in addition to its abundant availability in the form of sand, is that it is possible to form a superior stable oxide, SiO2, which has superb insulating properties.
    [Show full text]
  • Maximization of the Open Circuit Voltage for Hydrogenated Amorphous Silicon N–I–P Solar Cells by Incorporation of Protocrystalline Silicon P -Type Layers R
    Maximization of the open circuit voltage for hydrogenated amorphous silicon n–i–p solar cells by incorporation of protocrystalline silicon p -type layers R. Koval, Chi Chen, G. Ferreira, A. Ferlauto, J. Pearce, P. Rovira, C Wronski, R. Collins To cite this version: R. Koval, Chi Chen, G. Ferreira, A. Ferlauto, J. Pearce, et al.. Maximization of the open circuit voltage for hydrogenated amorphous silicon n–i–p solar cells by incorporation of protocrystalline silicon p - type layers. Applied Physics Letters, American Institute of Physics, 2002, 81 (7), pp.1258-1260. 10.1063/1.1499735. hal-02120550 HAL Id: hal-02120550 https://hal.archives-ouvertes.fr/hal-02120550 Submitted on 6 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. APPLIED PHYSICS LETTERS VOLUME 81, NUMBER 7 12 AUGUST 2002 Maximization of the open circuit voltage for hydrogenated amorphous silicon n – i – p solar cells by incorporation of protocrystalline silicon p-type layers R. J. Koval, Chi Chen, G. M. Ferreira, A. S. Ferlauto, J. M. Pearce, P. I. Rovira, C. R. Wronski, and R.
    [Show full text]
  • Keywords for Journal of Crystal Growth Please Supply up to Six
    Keywords for Journal of Crystal Growth Please supply up to six keywords from this list and insert them below the abstract in the proof of your paper which will be sent to you shortly. Each keyword should be accompanied by the capital letter denoting the category from which the keyword has been selected, e.g. Keywords: A1. Biocrystallization, B1. Nanomaterials. If the keywords from the list are not relevant, authors may choose their own keywords, but each of these should also be accompanied by the capital letter denoting the category into which it falls. The keyword list is also available on the journal homepage: http://www.elsevier.com/locate/jcrysgro. A. PROCESSES INDEX Hydrothermal crystal growth Nitrides Industrial crystallization Organic compounds A1. Fundamental Aspects Laser heated pedestal growth Oxides Liquid encapsulated Czochralski method Perovskites Adsorption Magnetic field assisted Czochralski method Phosphates Atomic force microscopy Microgravity conditions Phosphides Biocrystallization Natural crystal growth Polymers Biomaterials Seed crystals Potassium compounds Characterization Single crystal growth Proteins Computer simulation Stepanov method Quartz Convection Top seeded solution growth Rare earth compounds Crystal morphology Travelling solvent zone growth Salts Crystal structure Verneuil crystal growth Sapphire Crystallites Sodium chloride Defects A3. Thin Film/Epitaxial Growth Sucrose Dendrites Sulfides Desorption Atomic layer epitaxy Tellurites Diffusion Chemical beam epitaxy Thulium compounds Directional solidification Chemical vapor deposition processes Titanium compounds Doping Chloride vapor phase epitaxy Tungstates Etching Graphoepitaxy Tungsten bronzes Eutectics Hot wall epitaxy Vanadates Fluid flows Hydride vapor phase epitaxy Yttrium compounds Growth models Laser epitaxy Zinc compounds Heat transfer High resolution X-ray diffraction Liquid phase epitaxy B2. Materials by Property Class Impurities Low press.
    [Show full text]
  • Chemical Vapor Deposition Epitaxy on Patternless and Patterned Substrates
    ELECTRONIC MATERIALS PROCESSING CHEMICAL VAPOR DEPOSITION EPITAXY ON PATTERNLESS AND PATTERNED SUBSTRATES CHRISTOS G. TAKOUDIS Purdue University West Lafayette, IN 47907 (a) HE ELECTRONIC MATERIALS processing curric­ Tulum at Purdue consists primarily of a one-semes­ ter course. The objective of this course is to provide chemical engineering students with the basic princi­ ples and practical aspects of the most advanced state of electronics processing. The main emphasis of the (b) ~ course is on fundamental processes especially useful - ~a~,/J - for Very Large Scale Integration (VLSI) schemes [1]. 0 0 0 0 0 About five weeks are devoted to epitaxy, which is a process by which material is deposited onto a crys­ talline substrate or seed, and the crystalline config­ (c) uration is maintained. Two and one-half weeks are devoted to Vapor Phase Epitaxy (VPE) on patternless substrates, one week to VPE on patterned substrates typically known as Selective Epitaxial Growth (SEG), one week to doping profiles in epitaxially grown thin films, and one-half week to other kinds of epitaxy (e .g., Molecular Beam Epitaxy (MBE), Plasma As­ (d) sisted Chemical Vapor Deposition (PACVD)). The purpose of this paper is to focus on Chemical Vapor Deposition (CVD) epitaxy on patternless and pat­ terned substrates in the manner in which it has been developed in our course over the past five years. Journal articles play a very important role in many educational aspects of the CVD epitaxy on patternless (e) ==- and patterned substrates. A list of such journal arti­ ~ - 1/1 111/ll/ ll/ l ( - p E:=ic=5 1=5 cles typically used in class is presented at the end of FIGURE 1.
    [Show full text]
  • Graphene Growth on H-BN by Molecular Beam Epitaxy
    Graphene growth on h‐BN by Molecular Beam Epitaxy Jorge M. Garcia*,†,‡, Ulrich Wurstbauer‡, Antonio Levy‡, Loren N. Pfeiffer§, Aron Pinczuk‡,**, Annette S. Plaut††, Lei Wang‡‡, Cory R. Dean§§, Roberto Buizza‡‡, Arend M. Van Der Zande‡‡, James Hone‡‡, Kenji Watanabe***, and Takashi Taniguchi*** ABSTRACT The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h‐BN) flakes is demonstrated. Formation of single‐layer graphene is clearly apparent in Raman spectra which display sharp optical phonon bands. Atomic‐force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h‐BN substrates. The growth is governed by the high mobility of the carbon atoms on the h‐BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms. Keywords: A. Graphene, B. Molecular Beam Epitaxy, C. Raman spectroscopy, C. AFM, D. Crystal growth * Corresponding author: [email protected] † MBE Lab, IMM‐Instituto de Microelectrónica de Madrid (CNM‐CSIC),Isaac Newton 8, PTM, E‐28760 Tres Cantos, Madrid, Spain ‡ Department of Physics, Columbia University, New York, NY, USA § Electrical Engineering Department, Princeton University, NJ, USA ** Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA †† School of Physics, Exeter University, Exeter, UK ‡‡ Department of Mechanical Engineering, Columbia University, NY, NY, USA §§ Department of Electrical Engineering and Department of Mechanical Engineering, Columbia University, NY, NY, USA *** Advanced Materials Laboratory, National Institute for Materials, Science, 1‐1 Namiki, Tsukuba, 305‐0044, Japan.
    [Show full text]