Northern England's Lost Species Opportunities For

Total Page:16

File Type:pdf, Size:1020Kb

Northern England's Lost Species Opportunities For the project NORTHERN ENGLAND’S LOST SPECIES OPPORTUNITIES FOR REINTRODUCTION LIFESCAPE REPORT 2020 Lifescape Report 2020 The Lifescape Project aims to create For examples of our current projects, please transformed landscapes which are take a look at our website. We are always ecologically diverse and which inspire the eager to hear new ideas that could help to communities which live in and value them, in support our goals, so please contact us order to secure a sustainable future for all life through our website if you think we can be of on earth. This report includes images of wild assistance: landscapes across Europe which still The Lifescape Project is a not-for-profit https://lifescapeproject.org contain many of the species now lost from partnership which was formed by a number of Northern England. These images have been included as beautiful and inspiring organisations with experience in large scale examples of landscapes containing more conservation-based projects and the ecological, complete ecosystems and ecological social, economic and legal considerations behind processes than much of the UK them. Image on next page: Buttermere Lake, The Lake District, Cumbria, The United Kingdom Image on this page: Gran Sasso and Mointi della Laga National Park, Abruzzo, Italy Lifescape Report 2020 Lifescape Report 2020 OBJECTIVES AND PURPOSE Through the information in this report, we In line with IUCN Guidelines on reintroductions hope to open up a debate on the and translocations, this report includes a reintroduction of species which are consideration of the benefits and costs that currently locally extinct in Northern these species could provide for local England by highlighting a range of exciting communities, economies and businesses, and reintroduction possibilities that exist in just explores whether bringing back these extinct this one part of the UK. species to Northern England could be of overall benefit to those who live and work there. This report provides an evidence base for engagement, and we hope it inspires local wildlife and community groups to develop their In this light, the report does not propose to own reintroduction programmes. make any decisions for local communities. We recognise that whilst these species are exciting to those of us who are already passionate about their conservation and ecological benefits, not everyone shares this position. Lifescape Report 2020 OUR CORE OBJECTIVES We want to make it clear that this report is The core objective of this report is to provide an overview of the ecological, social and not promoting any specific species for economic impacts of reintroducing some of the species which are currently missing from reintroduction in any particular area. Northern England. The wider aims of this report are to: This is an important decision that local communities • Promote awareness of the animal species that have become extinct in Northern must make with accurate and impartial information to England due principally to human influences; hand. Our aim is to provide information that will help • Build an understanding of the benefits and costs associated with reintroducing to inform local debate and initiatives, and we hope to missing species within the local communities that might one day see those species develop an approach that can be repeated return; elsewhere around the country. Following publication • Provide an evidence base for identifying which of those species may be most suitable of the report, we plan to discuss the issues raised for reintroduction into Northern England; with local communities in Northern England through • Inspire engagement and community discussion around species reintroduction; various events and workshops. • Contribute to the discussion around on reintroductions that has been set in motion by the Government’s 25 Year Environment Plan; and • Provide a template for other organisations to assess the suitability of species reintroductions in other areas. Lifescape Report 2020 6 226322-4-145-v2.7 70-40684805 Lifescape Report 2020 WHY THESE SPECIES? Through this process, a shortlist of 16 missing THE SHORTLIST species was agreed. The shortlisted species were all nationally In discussions with the Cumbria Wildlife Trust, we decided that the report should focus on a shortlist of key species. Each species in our list of locally, extinct or extinct in regions of Northern England and regionally and nationally extinct species was assessed by: were all considered to present no or only a negligible risk to human health. The final selection of species • the geographical range of extinction - a species that was only extinct from this shortlist was then completed on the basis of at a very local level was given a lower score than those extinct at a their potential to deliver social, environmental and wider scale; and economic benefits to communities in the North of England. • the potential risk to human health or life - the successful A wide range of benefits were considered including reintroduction of species such as wolves would be unlikely to be ecosystem services, recreation value and tourism feasible, at least in the short term, due to the perception that there potential. Each species was assigned a score on a could be a risk to humans using Northern England for recreation. Such three-point scale, and the lowest scoring species were species were therefore given a lower score. excluded. This resulted in a final list of 10 species. Lifescape Report 2020 SPECIES PROFILES AN OVERVIEW FOR The following sections describe the species REINTRODUCTION DISCUSSIONS that we selected through our shortlisting In the following profiles, we set out a brief process: description of the species and its natural history, its UK conservation status, indicative 1. Beaver assessments of what each species could 2. Chough contribute ecologically, socially and 3. Common crane economically, and a summary of what the 4. Elk benefits and costs for local communities might 5. Golden eagle be. The sections summarising the social 6. Lynx impacts of each species do not look at the considerable inherent value of being able to 7. Pine marten share a landscape with these species. 8. Wildcat 9. White-tailed eagle 10. Silver-studded blue Lifescape Report 2020 Lifescape Report 2020 ▪ UK conservation status: Now a native species in Scotland ▪ International conservation status: Least concern ▪ Missing from Northern England since: 1500s (the last reference to beavers in England is from 1526) ▪ Scientific name: Castor fiber BEAVER THE EURASIAN BEAVER IS THE The charismatic beaver was hunted However, the wetlands that LARGEST NATIVE RODENT IN to extinction in the UK for its fur and beavers create can sometimes EURASIA. castoreum (beaver secretions which flood farmland and riverside are used in medicines). Beavers are woodland can also be restructured now gradually being brought back to through the actions of the beaver. the UK through reintroductions in both England and Scotland. Beavers can bring many benefits to the local environment, including improving water quality and reducing flood risk downstream by creating large wetlands that are rich in biodiversity. Lifescape Report 2020 BENEFITS AND COSTS BENEFITS COSTS ECOLOGICAL Beavers modify their ecosystems, In modifying landscapes and creating wetlands, delivering substantial increases in the there is inevitably restructuring of former habitat diversity of flora and fauna. Improvements types - typically riparian woodland. The to water quality may improve the ecological abundance of this habitat (affected mostly by status of water courses further wider land use factors) might need to be downstream. assessed locally before advocating reintroduction. SOCIAL Beavers offer great potential for community Whilst beavers are thought to reduce flood risk in involvement and education because of their general, there is evidence that they can also significant capacity to alter landscapes and cause damage to low-lying transport infrastructure their distinctive appearance and behaviour. and can result in the loss of farmland. It might be Volunteering and school visits have been necessary to compensate affected farmers, put in highly beneficial in existing reintroduction place a local exit strategy (in case it is needed) or sites. provide other safeguards on impacts. ECONOMIC There is a high potential for economic Other reintroductions have identified significant benefits through reintroducing beavers. costs in terms of practical reintroduction efforts, These will most likely be linked to tourism and costs through damage to infrastructure, and the potential for reducing flood damage flooding of low-lying farmland and reduced because beaver dams act as natural flood forestry yields. Costs would be highly dependent risk mitigation measures. There is also on the accessibility and ownership of the selected evidence of beaver-altered habitats reintroduction site, but are expected to be lower improving water quality, which would (due to land use and the terrain) in Cumbria than provide secondary benefits for water in other reintroduction areas. companies and potentially for recreational fisheries. Lifescape Report 2020 Lifescape Report 2020 Lifescape Report 2020 • UK conservation status: Locally extinct • International conservation status: Least concern • Missing from Northern England since: Around 1900, although it survived in Cornwall until 1952 and subsequently recolonised in 2001. Populations in the Isle of Man and South Wales remained strong during this time and have recently
Recommended publications
  • EU Zoo Inquiry Report Findings and Recommendations
    1 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS Written for the European coalition ENDCAP by the Born Free Foundation 2 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS 3 CONTENTS Page ABBREVIATIONS USED ............................................ 04 TERMS USED ............................................................... 04 FOREWORD ................................................................. 05 RECOMMENDATIONS ................................................ 06 EC ZOOS DIRECTIVE 1999/22, SUCCESS, FAILURE – OR WORK IN PROGRESS? ..... 08 THE EU ZOO INQUIRY 2011 FINDINGS 11 INTRODUCTION .......................................................... 12 METHODOLOGY .......................................................... 14 TRANSPOSITION ........................................................ 17 IMPLEMENTATION ..................................................... 22 ENFORCEMENT ........................................................... 28 COMPLIANCE .............................................................. 30 COUNTRY REPORTS AND UPDATES 41 AUSTRIA............................................................ 42 BELGIUM........................................................... 43 BULGARIA ........................................................ 44 CYPRUS............................................................
    [Show full text]
  • Beavers and Fish
    Beavers and Fish A: Introduction Land and freshwater fishery managers have become increasingly concerned following the announcement of a licensed trial to introduce European Beavers to Knapdale in Argyll. Their concern arises around the widespread interpretation by those who campaign for Beaver introductions to Britain that this licence heralds the return of Beavers to the British countryside; alongside which there have been repeated and consistent claims that Beavers will only be good, especially for biodiversity, and that there will be no adverse effects. This is despite the acknowledged fact that Beavers make profound changes to the ecosystems in which they live by making dams in watercourses; indeed this is a much cited benefit. The simplistic arguments that are presented to support the introduction of Beavers ignore widespread evidence that Beavers cause considerable damage both to the rivers and streams that they dam and also to the surrounding land. Much of this evidence is anecdotal but more is recorded in the scientific literature. Normally, when any major change to the English, Welsh or Scottish countryside is proposed, government agencies and others rightly demand appropriate assessments of the likely effects with particular reference to the literature, particularly where rivers or land under conservation designations such as SSSI (Site of Special Scientific Interest) or SAC (Special Area of Conservation) are involved. With Beaver introduction this process has been ignored; either no appropriate assessment has been made or none has been made public. This leaves a suspicion to many that the evidence may in fact be disadvantageous to the proposed introductions and that it is being suppressed.
    [Show full text]
  • Toward Successful Reintroductions: the Combined Importance of Species Traits, Site Quality, and Restoration Technique
    Kaye: Toward Successful Reintroductions Proceedings of the CNPS Conservation Conference, 17–19 Jan 2009 pp. 99–106 © 2011, California Native Plant Society TOWARD SUCCESSFUL REINTRODUCTIONS: THE COMBINED IMPORTANCE OF SPECIES TRAITS, SITE QUALITY, AND RESTORATION TECHNIQUE THOMAS N. KAYE Institute for Applied Ecology, P.O. Box 2855, Corvallis, Oregon 97339-2855; Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 ([email protected]) ABSTRACT Reintroduction of endangered plant species may be necessary to protect them from extinction, provide connectivity between populations, and reach recovery goals under the U.S. Endangered Species Act. But what factors affect reintroduction success? And which matter more: traits inherent to the species, qualities of the site, or reintroduction technique? Here I propose that all three interact. First, reintroduction success will be highest for endangered species that share traits with non-rare native species, invasive plants, and species that excel in restoration plantings as reviewed from the ecological literature. Ten traits are identified as common to at least two of these groups. Second, reintroductions will do best in habitats ecologically similar to existing wild populations and with few local threats, such as non-native plants and herbivores. And third, the methods used to establish plants, such as planting seeds vs. transplants or selecting appropriate microsites, will influence outcomes. For any reintroduction project, potential pitfalls associated with a particular species, site, or technique may be overcome by integrating information from all three areas. Conducting reintroductions as designed experiments that test clearly stated hypotheses will maximize the amount and quality of information gained from each project and support adaptive management.
    [Show full text]
  • Ecosystem-Level Effects of Keystone Species Reintroduction: a Literature Review Sarah L
    REVIEW ARTICLE Ecosystem-level effects of keystone species reintroduction: a literature review Sarah L. Hale1,2 , John L. Koprowski1 The keystone species concept was introduced in 1969 in reference to top-down regulation of communities by predators, but has expanded to include myriad species at different trophic levels. Keystone species play disproportionately large, important roles in their ecosystems, but human-wildlife conflicts often drive population declines. Population declines have resulted in the necessity of keystone species reintroduction; however, studies of such reintroductions are rare. We conducted a literature review and found only 30 peer-reviewed journal articles that assessed reintroduced populations of keystone species, and only 11 of these assessed ecosystem-level effects following reintroduction. Nine of 11 publications assessing ecosystem-level effects found evidence of resumption of keystone roles; however, these publications focus on a narrow range of species. We highlight the deficit of peer-reviewed literature on keystone species reintroductions, and draw attention to the need for assessment of ecosystem-level effects so that the presence, extent, and rate of ecosystem restoration driven by keystone species can be better understood. Key words: ecosystem restoration, ecosystem-level effects, keystone species, population declines, reintroduction species in their ecosystems. Wolves prevent ungulate overpop- Implications for Practice ulation, and in doing so prevent overbrowsing of vegetation • More research into ecosystem-level effects of keystone (McLaren & Peterson 1994), and provide scavengers with car- species reintroduction is required to fully understand if, rion in winters (Wilmers et al. 2003). Sea otters consume sea and to what extent, keystone species act as a restoration urchins (Strongylocentrotus spp.), thereby maintain the integrity tool.
    [Show full text]
  • The Network of Conservatoires Botaniques Nationaux in France Bardin & Moret
    The network of Conservatoires Botaniques Nationaux in France Bardin & Moret The network of Conservatoires Botaniques Nationaux in France and the implementation of the GSPC: results of fifteen years of activities Ph. Bardin and J. Moret Conservatoire Botanique National du Bassin parisien, Muséum National d’Histoire Naturelle, Paris, France Abstract The Conservatoire Botanique National of the Bassin Parisien: a leading role in plant diversity conservation in the French Ministry of Ecology and Sustainable Development (Departement Ecologie et Gestion de la Biodiversite) In France, the Conservatoires Botaniques Nationaux are responsible for the conservation of plant diversity. The Conservatoire Botanique National of the Bassin Parisien, which comes under the National Museum of Natural History, has five main activities, which are in total accordance with the targets of the GSPC. The communication will present many advancements which have been obtained in these five domains: 1. The ambitious programme of biodiversity inventory: it allows us today to provide a widely accessible list of two thousand known species, with more than three million data items (the seventh GBIF contributor). The database is useful to support public policies for territorial projects including biodiversity 2. The research activity is carried out on very limited size populations and include demographic and genetic studies, the development of protocols and relevant tools for ecological engineering 3. A large programme of ex situ conservation, with a seed bank, an in vitro micropropagation unit and a living collection as a back up for the in situ conservation projects 4. Numerous in situ programmes are carried out: population reinforcement, reintroduction and transplantation. At the same time, an ecological management of habitats is established to protect the ecosystems 5.
    [Show full text]
  • Evaluating the Potential for Species Reintroductions in Canada
    Evaluating the Potential for Species Reintroductions in Canada JAY V. GEDIR, TIAN EVEREST, AND AXEL MOEHRENSCHLAGER Centre for Conservation Research, Calgary Zoo, 1300 Zoo Road NE, Calgary, AB, T2E 7V6, Canada, email [email protected] Abstract: Species reintroductions and translocations are increasingly useful conservation tools for restoring endangered populations around the world. We examine ecological and socio- political variables to assess Canada’s potential for future reintroductions. Biologically ideal species would be prolific, terrestrial, herbivorous, behaviorally simple, charismatic, easily tractable, or large enough to carry transmitters for post-release evaluations, and would have small home range requirements. Sociologically, Canada’s large geographic area, low human density, high urban population, widespread protectionist views towards wildlife, and sound economic status should favor reintroduction success. Canada has implemented legislation to safeguard species at risk and, compared to developing countries, possesses substantial funds to support reintroduction efforts. We support the reintroduction guidelines put forth by the World Conservation Union (IUCN) but realize that several challenges regarding these parameters will unfold in Canada’s future. Pressures from the rates of species loss and climate change may precipitate situations where species would need to be reintroduced into areas outside their historic range, subspecific substitutions would be necessary if taxonomically similar individuals are unavailable,
    [Show full text]
  • Conservation Actions
    CHAPTER 4 Conservation Actions Table of Contents Take Action! Get Involved! ................................................................................................................... 5 Introduction ......................................................................................................................................... 9 Background and Rationale ................................................................................................................. 9 Conservation Action Classification System .................................................................................... 11 Conservation Action Description ........................................................................................................ 12 Best Practices for Conservation Actions ............................................................................................. 15 International Conservation Actions ................................................................................................ 15 Overview ........................................................................................................................................... 15 Regional Conservation Actions ........................................................................................................ 19 Regional Conservation Needs Program .............................................................................................. 19 Regional Action .............................................................................................................................
    [Show full text]
  • Population Dynamics of Eurasian Beaver After Reintroduction
    ISSN 2075-1117, Russian Journal of Biological Invasions, 2016, Vol. 7, No. 4, pp. 355–373. © Pleiades Publishing, Ltd., 2016. Original Russian Text © V.G. Petrosyan, V.V. Golubkov, N.A. Zavyalov, Z.I. Goryainova, N.N. Dergunova, A.V. Omelchenko, S.A. Bessonov, S.A. Albov, N.F. Marchenko, L.A. Khlyap, 2016, published in Rossiiskii Zhurnal Biologicheskikh Invazii, 2016, No. 3, pp. 66–89. Patterns of Population Dynamics of Eurasian Beaver (Castor fiber L.) after Reintroduction into Nature Reserves of the European Part of Russia V. G. Petrosyana, *, V. V. Golubkovb, N. A. Zavyalovc, **, Z. I. Goryainovaa, N. N. Dergunovaa, A. V. Omelchenkoa, S. A. Bessonova, S. A. Albovd, N. F. Marchenkoe, and L. A. Khlyapa, *** aSevertsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, Moscow, 119071 Russia bFederal Research Centre “Information and Management”, Russian Academy of Sciences, ul. Vavilova 44, Moscow, 119333 Russia cRdeysky Nature Reserve, ul. Chelpanova 27, Kholm, Novgorod oblast, 175271 Russia dPrioksko-Terrasnyi Nature Biosphere Reserve, Serphukov District, Danki, Moscow oblast, 142200 Russia eKhopersky Nature Reserve, Varvarino, NovoKhopersky District, Voronezh oblast, 397418 Russia *e-mail: [email protected] **e-mail: [email protected] ***e-mail: [email protected] Received May 12, 2016 Abstract⎯This paper presents the results of analysis of the population dynamics of Eurasian beaver after its reintroduction into the Lapland, Darvinsky, Central-Forest, Prioksko-Terrasnyi, Oksky, and Khopersky nat- ural reserves that are located in European Russia in the northern, southern and central parts of the beaver range. The paper analyzes the effectiveness of a discrete time model that includes a feedback between animals and their food resources for the quantitative description of the population dynamics in the optimal, suboptimal, and pessimal habitats.
    [Show full text]
  • North American Beaver (Castor Canadensis)
    Utah Division of Wildlife Resources Wildlife Notebook Series No. 24 North American Beaver (Castor canadensis) Beaver are thought to have once numbered 60-400 million throughout North America before European settlement. Prior to 1825, explorers in Utah noted beaver in abundance throughout the state. Highly prized for their lustrous pelts, beaver populations were decimated by fur trapping during the 1700s and 1800s to supply a worldwide demand for warm and fashionable accessories. By the end of the decade they were considered rare and in Utah, their harvest was closed in 1899. Beaver have since recolonized a large portion of their former range, however loss of habitat due largely to competing land uses, has severely limited populations in many areas through- out Utah. DESCRIPTION Beaver are the largest rodents in North America. Their soft pelts range in color from nearly black, brown, reddish brown to blonde. Adults can grow to over four feet in length and up to 60 pounds or more in weight. They can live to be 20 years old. The most distinctive feature of beaver is their broad paddle-like tail, which they use like a rudder to navigate their watery environment and to balance upon as they stand on their hind legs gnawing on trees and various woody plants they harvest and use for food. While generally clumsy on land, beaver are incredibly grace- ful in the water, where they use their webbed rear feet to propel them and their tail to steer. This large tail is also used as a defense mechanism. When beaver are threatened, they will slap their tail on the surface of the water to alert family members of potential danger and to startle potential preda- tors such as bears, bobcats or otters.
    [Show full text]
  • Population and Distribution of Eurasian Beaver (Castor Fiber)
    BALTIC FORESTRY POPULATION AND DISTRIBUTION OF EURASIAN BEAVER ( CASTOR FIBER ) H. HALLEY ET AL. Population and Distribution of Eurasian Beaver ( Castor fiber ) 1 2 3 DUNCAN HALLEY , FRANK ROSELL AND ALEXANDER SAVELJEV 1 Norwegian Institute for Nature Research, Tungasletta 2, N-7485 Trondheim, Norway, e-mail: [email protected] 2 Telemark University College, N-3800 B¸ i Telemark, Norway 3 Russian Research Institute of Game Management and Fur Farming (VNIIOZ) of RAAS, 610000 Kirov, Russia Corresponding author: Duncan Halley Halley, D., Rosell, F. and Saveljev, A. 2012. Population and Distribution of Eurasian Beaver ( Castor fiber ). Baltic Forestry 18(1): 168175. Abstract After being reduced to about 1,200 animals in eight isolated populations by the beginning of the 20th century, Eurasian beavers ( Castor fiber ) have powerfully recovered in range and population, through widespread reintroductions, relaxation of persecution, and natural spread. Populations are now (2010) established in all countries within their former natural range in Europe except for Portugal, Italy, and the south Balkans (Greece, Albania, Bulgaria, Macedonia, Kosovo, Montenegro). In Asia, there are significant populations in West and Central Siberia; and small relict populations elsewhere in west and south Siberia, and in Xinjiang (China)/western Mongolia. The current minimum world population estimate for Eurasian beavers is 1.04 million, though this figure includes some populations of introduced North American beavers ( C. canadensis ) in the NW and Far Eastern Russian Federation, where the ranges of the two species occur in close proximity and to some extent overlap. Both populations and range are in rapid expansion, and in 2008 the species was reclassified by IUCN as Least Concern , though some subspecies remain threatened.
    [Show full text]
  • Finding Correlations Among Successful Reintroduction Programs: an Analysis and Review of Current and Past Mistakes
    Finding Correlations among Successful Reintroduction Programs: An Analysis and Review of Current and Past Mistakes by Jillian Estrada A practicum submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) at the University of Michigan April 2014 Faculty advisor(s): Professor Bobbi Low, Chair Dr. M. Elsbeth McPhee Abstract In the past half century the world has seen a dramatic decline in species. More and more species are being pushed to brink of extinction. In the past, there have been several methods utilized to mitigate these trends, however with the recent surge of local extinctions, reintroductions have become a growing conservation tool. Despite many disadvantages of developing a reintroduction plan, hundreds have been attempted over the past 40 years, with mixed outcomes. Some conservationists have studied the factors associated with success; however the criteria on which their assessments were based were flawed. I attempted to complete my own assessment of successful programs using detailed program information along with life history traits of focal species. My results illustrate the many obstacles faced by reintroduction biologists. Based on the limitations faced throughout this study, I conclude that conservationists must take a step back and address the many issues with current reintroduction protocols prior to attempting any further assessments. My recommended solutions to some of these issues include defining universal criteria for a reintroduction program to be considered successful; monitoring, logging, and disseminating standardized data; and collaborating with captive facilities that have the ability to offer additional support. ii Acknowledgments Advisors Dr. Bobbi S. Low, Co-Chair, Professor of Natural Resources, School of Natural Resources and the Environment, The University of Michigan, Ann Arbor, Michigan Dr.
    [Show full text]
  • Use of Anal Gland Secretion to Distinguish the Two Beaver Species Castor Canadensis and C
    Central Washington University ScholarWorks@CWU Biology Faculty Scholarship College of the Sciences 6-1999 Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber Frank Rosell Telemark College Lixing Sun Central Washington University, [email protected] Follow this and additional works at: https://digitalcommons.cwu.edu/biology Part of the Biology Commons Recommended Citation Rosell, F. & Sun, L. (1999). Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber. Wildlife Biology, 5(2), 119-123. This Article is brought to you for free and open access by the College of the Sciences at ScholarWorks@CWU. It has been accepted for inclusion in Biology Faculty Scholarship by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. SHORT Short communication articles are short scientific entities often dealing with methodological problems or with byproducts of larger research COMMUNICATION projects. The style should be the same as in original articles Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber Frank Rosell & Lixing Sun Rosell, F. & Sun, L. 1999: Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber. - Wildl. Biol. 5: 119-123. Introduced North American beavers Castor canadensis pose a potential threat to the continuing recovery of Eurasian beaver C. fiber populations in several European countries. For management purposes, it is necessary to be able to identify and distinguish the two species. This, however, is difficult because the two species are morphologically, ecologically and behavioural- ly similar.
    [Show full text]