The Flora and Vegetation of Sosnovets Island, the White Sea

Total Page:16

File Type:pdf, Size:1020Kb

The Flora and Vegetation of Sosnovets Island, the White Sea Memoranda Soc. Fauna Flora Fennica 95: 1–35. 2019 ISSN 0373-6873 (print) Helsinki 24 January 2019 ISSN 1796-9816 (online) The flora and vegetation of Sosnovets Island, the White Sea Mikhail N. Kozhin*, Ekaterina O. Golovina, Ekaterina I. Kopeina, Stanislav A. Kutenkov & Alexander N. Sennikov Kozhin, M. N., Department of Geobotany, Faculty of Biology, Moscow State University, Leninskye Gory 1–12, GSP–1, 119234 Moscow, Russia; & Avrorin Polar-Alpine Botanical Garden and Institute of Kola Scientific Centre of Russian Academy of Sciences, 184250 Kirovsk, Murmansk Region, Russia. E-mail: [email protected] (*Author for correspondence) Golovina, E. O., Laboratory of Vegetation Geography and Mapping, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 2, 197376 St. Petersburg, Russia. E-mail: [email protected] Kopeina, E. I., Avrorin Polar-Alpine Botanical Garden and Institute of Kola Scientific Centre of Russian Academy of Sciences, 184250 Kirovsk, Murmansk Region, Russia. E-mail: kopeina-e@ yandex.ru Kutenkov, S. A., Institute of Biology of Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya str. 11, 185910 Petrozavodsk, Karelia, Russia. E-mail: effort@krc. karelia.ru Sennikov, A.N., Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland; & Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 2, 197376 St. Petersburg, Russia. E-mail: alexander.sennikov@ helsinki.fi The flora and vegetation of Sosnovets Island (White Sea Throat, Murmansk Region, Russia) has been studied and described in detail. This is a small island situated within the tundra zone, largely covered by a permafrost peatland with the presence of flarks, a palsa mire, and rock outcrops. Vascular plants of Sosnovets Island include 167 species and subspecies, of which 134 species and subspecies are considered native and 33 species are alien. The number of tundra species is higher and that of boreal species is lower than on the other White Sea islands; a few species with east- ern distributions in East Europe are present; 6 protected species are recorded. Alien species were mostly transported from Arkhangelsk Region but partly from Central Russia; main pathways were forage, construction and gardens; one species (Alchemilla cymatophylla) was likely introduced as a polemochore. The vegetation of Sosnovets Island is represented by a complex of lichen, dwarf- shrub, cottongrass-sphagnous and sedge-sphagnous communities of the peatland, which covers the major part of the island, as well as dwarf-shrub and lichen tundras, coastal vegetation, willow thickets, dwarf cornel (Cornus suecica) and secondary anthropogenic meadows and grasslands. A palsa mire, marshes with Calamagrostis deschampsioides, highly dissected peatlands with cloud- berry-crowberry-lichen communities on elevated sites and cottongrass-sphagnous communities in depressions are the unique features of the island’s vegetation. 2 Kozhin et al. • Memoranda Soc. Fauna Flora Fennica 95, 2019 Introduction Vascular plants of the White Sea islands were included into larger studies in Murmansk Region Insular ecosystems have a certain level of peculi- (Gorodkov 1953–1954; Pojarkova 1956–1966), arity because of their restricted size and isolation, Karelia (Kravchenko 2007) and Arkhangelsk Re- which makes them suitable for testing ideas and gion (Schmidt 2005), although their particular de- principles of ecology and evolution but also leads scriptions and analyses are far from being com- to their vulnerability under climatic changes and prehensive. Nevertheless, there is a long tradition anthropogenic pressure (Drake et al. 2002). The of biodiversity studies of the White Sea, includ- biogeographic context of such studies concerns ing numerous islands along its coasts. species richness and distribution, and also region- Ivan I. Lepekhin was the first naturalist to vis- alization patterns of target study groups. Island it the White Sea islands. In June 1772, upon com- biogeography (MacArthur & Wilson 1967) has pleting his four-year journey across various prov- been developed when the biodiversity of insular inces of the Russian Empire, he visited the So- ecosystems is studied (Haila et al. 1982; Patiño et lovetsky Islands and provided a brief descrip- al. 2017); its results are of special interest when tion of them (Lepekhin 1805). Almost a centu- larger archipelagoes, harbouring many endemic ry thereafter, in 1861, the islands were visited species, are examined (e.g. Bramwell 1976), but by Karl Emil Inberg, an entomologist, and Gus- may also reveal important dependencies when taf Selin, a botanist, as a group of the Finnish ex- smaller and minor insular groups are considered pedition to Russian Lapland supported by Socie- (e.g. Rebassoo 1987). tas pro Fauna et Flora Fennica and the Consisto- 38° 40° 42° k o j l A K L E c o e h e l Tersko-Orlovsky Mayak b r m s ! j L j o a a o z k k i s h i n j a g a s ! Kanevka! Ponoi 67° n e !! Pesochnoye i Korabelnoye o a e Lakhta Pon g j D u a n h i z c l r a o o 67° urn v a P ka Varzuga V n S a o n i S e o j n P s n Sergozero o n it o s p v a k p Bab'je a L a a Tulom i b P a ! u Sosnovets l n l k o Sosnovka a n B o g ab Island t a a a g J n j u a r l e l e p i S B r t ab t s a S a oz s er p it a o a Varzuga K m o ! o a p Kashkarantsy Ondomozera a h Py alit r L sa ! Kuzomen C ! ! Pyalitsa h Ustje-Varzuga 66° Mayak Nikodimsky ! ! T C! havanga ! ! Chapoma Tetrino Strelna Legend expedition route 66° study area biogeographical provinces W H I T E S E A ! populated places Scale 1: 2 000 000 38° 40° Figure 1. Sosnovets Island as a study area, and the route of our botanical expeditions to the south-eastern coast of the Kola Peninsula, July–August 2015–2016. Memoranda Soc. Fauna Flora Fennica 95, 2019 • Kozhin et al. 3 ry of the University of Helsinki. They stayed on published based on an expedition of the North- the islands for two weeks, 11–25 July, and pre- ern (Arctic) Federal University in 2012 (Churak- pared the first scientific collections (insects and ova et al. 2016). plants) from the White Sea islands (Sennikov & As a result of these activities, numerous an- Kozhin 2018). For a certain period, further floris- notated check-lists, vegetation descriptions and tic studies on the White Sea islands were sporad- analyses of human and natural dynamics of the is- ic and non-organized (Lindberg 1914; Pobedimo- land floras were published. However, all the pre- va et al. 1960; Uotila 2013). vious studies were performed in the taiga zone When the Kandalaksha Strict Nature Reserve and mainly in the western part of the White Sea. was founded in 1932, regular studies of the flo- To extend the studies into the tundra zone, we ra and vegetation had been established on the is- have started a new initiative that aimed at reveal- lands. A number of insular systems in the Kan- ing the flora and describing the vegetation of the dalaksha Bay were explored, first floristic check- islands situated along the north-eastern coast of lists (e.g. Bogdanova & Vekhov 1969a, 1969b; the White Sea. Vorob’eva 1986, 1989, 1996b; Zherikhina & On this way, Sosnovets Island was selected as Moskvicheva 2006), descriptions and classifica- a case study. We described its complete flora and tions of their flora and vegetation (Breslina 1987; plant communities in order to provide insights Vorob’eva 1996a; Kozhin 2011) were compiled. into the features of the northern islands’ species The flora of the Solovetsky Islands, the largest ar- composition, the vegetation of the tundra zone chipelago situated in the outer part of the Onega and its anthropogenic transformation. Bay, was regularly studied by the Moscow State University in 1980–2000 (e.g. Kiseleva et al. 1997), with later additions from other research- Study area ers (e.g. Savinov & Semashko 2014). Minor is- lands at the border of Murmansk Region and Ka- Sosnovets Island (Figs. 1, 2) is located 8 km south relia were explored by student expeditions from of the Arctic Circle near the south-eastern part of Moscow (Shipunov & Abramova 2006). Since the Tersky Coast in the White Sea Throat, at 66° 2000, the floras of the other Onega Bay islands 29′ N, 40° 41′ E. The island has an area of 40.6 have been studied by Karelian Research Centre ha, a length of 1385 m, a width of 445 m, and a of the Russian Academy of Sciences (Kravchen- perimeter of ca 3.5 km. The summit plain is about ko et al. 2002, 2008, 2015). Recently, the infor- 10–15 m above sea level and the maximum ele- mation on the island floras of the Dvina Bay was vation situated in the southern part of the island Figure 2. General view of Sosnovets Island from a powered paraglider. Photo: Boris B. Vakhmistrov. 4 Kozhin et al. • Memoranda Soc. Fauna Flora Fennica 95, 2019 is 16.2 m above sea level. The Sosnovets light- part of the Tersky Coast, the climate is most se- house is located in the central part of the island. vere among all the other regions of the Sea (Yak- The southern shore is lower and flatter than the ovlev 1961). As observed at the Sosnovets weath- northern and western ones. The tideland width er station (ID 22355), the average annual temper- comprises from 10 to 90 m.
Recommended publications
  • Stace Edition 4: Changes
    STACE EDITION 4: CHANGES NOTES Changes to the textual content of keys and species accounts are not covered. "Mention" implies that the taxon is or was given summary treatment at the head of a family, family division or genus (just after the key if there is one). "Reference" implies that the taxon is or was given summary treatment inline in the accounts for a genus. "Account" implies that the taxon is or was given a numbered account inline in the numbered treatments within a genus. "Key" means key at species / infraspecific level unless otherwise qualified. "Added" against an account, mention or reference implies that no treatment was given in Edition 3. "Given" against an account, mention or reference implies that this replaces a less full or prominent treatment in Stace 3. “Reduced to” against an account or reference implies that this replaces a fuller or more prominent treatment in Stace 3. GENERAL Family order changed in the Malpighiales Family order changed in the Cornales Order Boraginales introduced, with families Hydrophyllaceae and Boraginaceae Family order changed in the Lamiales BY FAMILY 1 LYCOPODIACEAE 4 DIPHASIASTRUM Key added. D. complanatum => D. x issleri D. tristachyum keyed and account added. 5 EQUISETACEAE 1 EQUISETUM Key expanded. E. x meridionale added to key and given account. 7 HYMENOPHYLLACEAE 1 HYMENOPHYLLUM H. x scopulorum given reference. 11 DENNSTAEDTIACEAE 2 HYPOLEPIS added. Genus account added. Issue 7: 26 December 2019 Page 1 of 35 Stace edition 4 changes H. ambigua: account added. 13 CYSTOPTERIDACEAE Takes on Gymnocarpium, Cystopteris from Woodsiaceae. 2 CYSTOPTERIS C. fragilis ssp. fragilis: account added.
    [Show full text]
  • For Classification and Construction of Ships (Rccs)
    RULES FOR CLASSIFICATION AND CONSTRUCTION OF SHIPS (RCCS) Part 0 CLASSIFICATION 4 RCCS. Part 0 “Classification” 1 GENERAL PROVISIONS 1.1 The present Part of the Rules for the materials for the ships except for small craft Classification and Construction of Inland and used for non-for-profit purposes. The re- Combined (River-Sea) Navigation Ships (here quirements of the present Rules are applicable and in all other Parts — Rules) defines the to passenger ships, tankers, pushboats, tug- basic terms and definitions applicable for all boats, ice breakers and industrial ships of Parts of the Rules, general procedure of ship‘s overall length less than 20 m. class adjudication and composing of class The requirements of the present Rules are formula, as well as contains information on not applicable to small craft, pleasure ships, the documents issued by Russian River Regis- sports sailing ships, military and border- ter (hereinafter — River Register) and on the security ships, ships with nuclear power units, areas and seasons of operation of the ships floating drill rigs and other floating facilities. with the River Register class. However, the River Register develops and 1.2 When performing its classification and issues corresponding regulations and other survey activities the River Register is governed standards being part of the Rules for particu- by the requirements of applicable interna- lar types of ships (small craft used for com- tional agreements of Russian Federation, mercial purposes, pleasure and sports sailing Regulations on Classification and Survey of ships, ekranoplans etc.) and other floating Ships, as well as the Rules specified in Clause facilities (pontoon bridges etc.).
    [Show full text]
  • Karymorphological and Molecular Studies on Seven Species in Polygonoideae (Polygonaceae) in Egypt
    Chromosome Botany (2012) 7: 17-22 © Copyright 2012 by the International Society of Chromosome Botany Karymorphological and molecular studies on seven species in Polygonoideae (Polygonaceae) in Egypt Magdy Hussein Abd El-Twab1, Ahmed M. Abdel-Hamid and Hagar Ata A. Mohamed Department of Botany and Microbiology, Faculty of Science, Minia University 61519, El-Minia City, Egypt 1Author for correspondence: ([email protected]) Received January 22, 2012; accepted February 29, 2012 ABSTRACT. Seven species in four genera of the Polygonoideae (Polygonaceae) in Egypt were subjected to karyomorphological and molecular studies in order to identify their chromosomal characteristics and investigate their phylogenetical relationships by the conventional staining method and the 5S rDNA PCR. Seed germination after treatment with low temperature stratifi cation and acidifi cation by concentrated H2SO4 was studied. Three rates of germination were obtained in response to the cold stratifi cation and acidifi cation: 1) High in Polygonum equisetiforme, Persicaria lanigera, Pe. lapathifolia and Pe. salicifolia; 2) low in Rumex dentatus; 3) no effect in R. pictus and Emex spinosa. Variation in the chromosome complements number, length and structure were detected for Po. equisetiforme (2n=58; new count); Pe. lanigera (2n=40; new count); Pe. lapathifolia (2n=22); Pe. salicifolia (2n=60); Emex spinosa (2n=18; a new count); Rumex dentatus (2n=40); and R. pictus (2n=18; a new count). Eighteen polymorphic bands of 5S rDNA were used to determine the similarities among the taxa with the similarity coeffi cient ranging between 0.2 and 0.67. KEYWORDS: Acidifi cation, Chromosomes, 5S rDNA, Polygonaceae, Stratifi cation. The Polygonaceae is cosmopolitic to temperate regions have been widely used to elucidate generic relationships (Täckholm 1974; Boulos 1999).
    [Show full text]
  • Koenigia Lapathifolia, ​ the Correct Name for Koenigia Alaskana (Polygonaceae)
    C​ACTOLOGIA ​ P​HANTASTICA ​ 10(2) ISSN 2590-3403 22 March 2020 doi:10.5281/zenodo.3722943 Koenigia lapathifolia, ​ the Correct Name for Koenigia alaskana (Polygonaceae) M​AARTEN​ H. J. ​VAN DER​ M​EER1 Abstract​—The combination Koenigia​ alaskana (Small) T.M.Schust. & Reveal is illegitimate because its basionym, Polygonum​ alpinum alaskanum Small, is a superfluous replacement name for Polygonum alpinum var. lapathifolium Cham. & Schltdl. The correct ​ combination,​ Koenigia lapathifolia (Cham. & Schltdl.) M.van der Meer, is proposed. ​ Small (1895: 33) published P​ olygonum alpinum alaskanum as a replacement name ​ for P​ olygonum alpinum var. l​ apathifolium Cham. & Schltdl., apparently because he considered the latter name an illegitimate later homonym of P​ olygonum lapathifolium L. ​ However, under article 11.2 of the International Code of Nomenclature for algae, fungi, and plants (ICN; Turland & al. 2018), names have no priority outside the rank at which they are published. The limitation on this provision in article 53.3 is not applicable because it pertains only to subgeneric names and epithets below the rank of species. Hence, P​ olygonum alpinum alaskanum is an illegitimate ​ later synonym of P​ olygonum alpinum var. l​ apathifolium and all combinations based on this basionym are also illegitimate. 1 Roggekamp 379 NL-2592 VV Den Haag [email protected] ORCiD: 0000-0002-5182-9615 CC BY-SA 4.0 1 ​ C​ACTOLOGIA ​ P​HANTASTICA ​ 10(2) ISSN 2590-3403 22 March 2020 doi:10.5281/zenodo.3722943 The correct combination in K​ oenigia L. is proposed here: ​ Koenigia lapathifolia ​(Cham. & Schltdl.) M.van der Meer c​ omb. et stat.
    [Show full text]
  • Polygonaceae of Alberta
    AN ILLUSTRATED KEY TO THE POLYGONACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1999) and the Flora North America Associaton (2005). Taxonomy follows VAS- CAN (Brouillet, 2015). The main references are listed at the end of the key. Please let us know if there are ways in which the kay can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). POLYGONACEAE Buckwheat Family 1a Key to Genera 01a Dwarf annual plants 1-4(10) cm tall; leaves paired or nearly so; tepals 3(4); stamens (1)3(5) .............Koenigia islandica S2 01b Plants not as above; tepals 4-5; stamens 3-8 ..................................02 02a Plants large, exotic, perennial herbs spreading by creeping rootstocks; fowering stems erect, hollow, 0.5-2(3) m tall; fowers with both ♂ and ♀ parts ............................03 02b Plants smaller, native or exotic, perennial or annual herbs, with or without creeping rootstocks; fowering stems usually <1 m tall; fowers either ♂ or ♀ (unisexual) or with both ♂ and ♀ parts .......................04 3a 03a Flowering stems forming dense colonies and with distinct joints (like bamboo
    [Show full text]
  • Downloaded Daily to the Geodetic Survey Division in Ottawa, Where They Are Reviewed for Quality Control, Archived, and Uploaded to the International GPS Service
    Arctic Coastal Dynamics Report of the 4th International Workshop VNIIOkeangeologia, St. Petersburg (Russia), 10-13 November 2003 Edited by Volker Rachold and Georgy Cherkashov Volker Rachold, Alfred Wegener Institute, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany Georgy Cherkashov, VNIIOkeangeologia (Institute for Geology and Mineral Resources of the Ocean), Angliysky prospect 1, 190121 St. Petersburg, Russia Preface Arctic Coastal Dynamics (ACD) is a joint project of the International Arctic Sciences Committee (IASC) and the International Permafrost Association (IPA) and a regional project of IGBP-LOICZ (International Geosphere-Biosphere Programme – Land- Ocean Interactions in the Coastal Zone). Its overall objective is to improve our understanding of circum-Arctic coastal dynamics as a function of environmental forcing, coastal geology and cryology and morphodynamic behavior. The fourth IASC-sponsored ACD workshop was held in St. Petersburg, Russia, on November 10-13, 2003. Participants from Canada (7), Germany (7), Great Britain (2), the Netherlands (1), Norway (1), Russia (32), Ukraine (1) and the United States (8) attended. During the first part of the workshop, 63 papers dealing with regional and/or circum-Arctic coastal dynamics were presented. Based on the material presented, five thematic working groups were identified: (1) GIS working group to develop of a circum-Arctic coastal GIS system, (2) coastal permafrost working group to discuss processes involved in the transition of onshore to offshore permafrost, (3) biogeochemistry working group with the focus on transport and fate of eroded material (4) biodiversity working group to initiate planning of an Arctic Coastal Biodiversity research agenda, (5) environmental data working group to discuss coastal dynamics as a function of environmental forcing.
    [Show full text]
  • Chapter 4. Oil and Gas Accidents – Prevention and Liquidation
    Chapter 4. Oil and gas accidents – prevention and liquidation. In this chapter we take a theoretical approach towards accidents and incidents. This reason is twofold: In Soviet times, statistics were often used as political tools, and this makes it difficult to make a completely reliable analysis. To a certain extent, this legacy still applies to Russia today. We are therefore careful not to use too many official statistics. Secondly, there is still little offshore activity in Arctic waters, thus limiting the amount of empiric data available. Nonetheless, in this chapter we examine some accidents which occurred in the Arctic, such as the Usinsk oil spill in 1994 . This chapter also describes the emergency rescue routines in Murmansk oblast, together with regulations for emergency preparedness and response for the oil and gas sector. All the information presented in this chapter is accompanied by reference data, opinions from specialists, legal notes and illustrations. Several situations are examined using Murmansk oblast as an example. 4.1. Accidents and incidents: causes and consequences Here’s a thought… Oleg Mitvol, deputy director of the Russian federal service managing the oversight of natural resources (Rosprirodnadzor) said in an interview that spills of oil and other oil products take place every two weeks in Russia, RBC Daily Russian news agency reported in September 2005. According to RBC, Russian experts estimate that 3-7 per cent of all extracted oil is lost during extraction and transportation. The official numbers are much lower. 4,1,1 Accidents involving oil pipelines In 2003, according to data from Russia’s Ministry of Civil Defence, Emergencies and Disaster Relief, there were 48 accidents on main and intrafield pipelines which led to emergency situations (compared with 55 in 2002).1 However, other sources states that the number of accidents involving oil pipelines has increased by 20% over the course of several years.
    [Show full text]
  • Quternary Geology and Landforming Processes
    International Field Symposium on Quaternary Geology and Landforming Processes RUSSIAN ACADEMY OF SCIENCES KOLA SCIENCE CENTRE GEOLOGICAL INSTITUTE THE PERIBALTIC GROUP OF THE INQUA SUBCOMISSION ON GLACIATION FRIENDS OF BALTIC QUATERNARY QUTERNARY GEOLOGY AND LANDFORMING PROCESSES International Field Symposium Kola Peninsula, NW Russia, September 4-9, 2005 Proceedings of the International Field Symposium APATITY 2005 __________________________________________ Kola Peninsula, NW Russia, September 4-9, 2005 International Field Symposium on Quaternary Geology and Landforming Processes Published by decision of the Presidium of the Kola Science Centre Russian Academy of Sciences UDC 551.79+551.435 QUATERNARY GEOLOGY AND LANDFORMING PROCESSES Proceedings of the International Field Symposium, Kola Peninsula, NW Russia, September 4-9, 2005. – Apatity: Print. Kola Science Centre RAS, 2005. -77 p. Organizing Committee: Felix Mitrofanov – (Chair, Member of the Russian Academy of Sciences), Albertas Bitinas (Lithuania), Marina Efimova (Russia), Tiit Hang (Estonia), Clas Hattestrand (Sweden), Vasili Kolka (Russia), Olga Korsakova (Russia), Svetlana Nikolaeva (Russia), Irina Pavlovskaya (Belarus), Jan A. Piotrowski (Denmark), Vladimir Yevzerov (Russia), Elena Zakharchenko (Russia), Vitalijs Zelchs (Latvia), Dimitry Zozulja (Russia) Editorial handling: Vasili Kolka and Olga Korsakova Sponsored by: The International Union for Quaternary Research The Geological Institute of Kola Science Centre Russian Academy of Sciense © Geological Institute KSC RAS, 2005 ©Kola Science Centre Russian Academy of Sciences, 2005 2 _________________________________________ Kola Peninsula, NW Russia, September 4-9, 2005 International Field Symposium on Quaternary Geology and Landforming Processes CONTENTS SEDIMENT-LANDFORM ASSOCIATIONS AT THE SOUTHERN MARGIN OF THE SCANDINAVIAN ICE SHEET, SOUTH SWEDISH UPLAND Helena Alexanderson 8 LITHOLOGY AND PALAEOMAGNETIC RECORD OF LATE WEICHSELIAN VARVED CLAYS FROM NW RUSSIA Vladimir G.
    [Show full text]
  • Grey Seals on the Murman Coast, Russia: Status and Present Knowledge
    Grey seals on the Murman coast, Russia: status and present knowledge Sergej V. Ziryanov and Vasily L. Mishin Polar research Institute of Marine Fisheries and Oceanography (PINRO), 183763 Murmansk, Russia ABSTRACT Grey seals (Halichoerus grypus) are distributed along the entire northern Murman coast in Russia. Breeding sites are located mainly on the Ainov and Seven islands, which belong to the Kandalaksha Nature Reserve. The annual pup production was estimated to be around 800 pups in the early 1990s, and the pup mortality has been observed to be relatively high. The population was estimated to be approxi- mately 3,500 individuals in 1994. Grey seals migrate in small numbers into the White Sea during sum- mer. The grey seal is protected and registered in the Red Books of Russia, Murmansk region and Fen- noscandia. The main results of grey seals investigations from 1986 to 2000 are briefly reviewed. There are no recent studies on abundance, seasonal distribution, growth, moulting and feeding of the species. Ziryanov, S.V. and Mishin, V.L. 2007. Grey seals on the Murman coast, Russia: status and present knowledge. NAMMCO Sci. Publ. 6:13-22. INTRODUCTION The grey seal (Halichoerus grypus) occurs works did not permit adequate assessment of in coastal waters of northern Murman (Fig. the status of breeding colonies. Aspects of bi- 1). Local hunting for grey seals has been per- ology such as breeding season, moulting and formed on the Murman coast for many years. behaviour were not covered (Kondakov 1997). N. A. Smirnov did his biological identifica- tion of the species in the area of Murman just Investigations of the local fauna, including grey at the beginning of the 20th century (Smirnov seals, were attempted starting in 1938, when a 1903).
    [Show full text]
  • Petrodevelopment 2030
    Petrodevelopment 2030 Socio-economic consequences of an extensive oil and gas development in the Barents Sea A report prepared for StatoilHydro by a group of researchers from Norwegian College of Fishery Science, University of Tromsø, Norut - Northern Research Institute, Alta, and Institute for Economic Studies, Kola Science Centre Title: Petrodevelopment 2030 Socio-economic consequences of an extensive oil and gas development in the Barents Sea Authors: Peter Arbo, Vladimir Didyk, Bjørn Hersoug, Inge Berg Nilssen, Vigdis Nygaard, Larissa Riabova, Jan Yngve Sand and Stein Østbye Joint report: Norwegian College of Fishery Science, University of Tromsø Norut – Northern Research Institute, Alta Institute for Economic Studies, Kola Science Centre Commissioned by: StatoilHydro Project leader: Peter Arbo Quality assurance: Bjørn Hersoug Summary: The theme of this report is the regional socio-economic consequences of an extensive oil and gas development in the Barents Sea. The regional focus area includes Finnmark County and Murmansk Oblast. The introductory chapter explains the purpose of the study and the way the work has been done. The next two chapters provide a detailed account of the region and its basic characteristics. The general finding is that the region strongly needs a new stimulus to growth, but that it is badly prepared for receiving a coming oil and gas boom. The following chapter gives a brief overview of the oil and gas sectors in Norway and Russia and introduces the baseline scenario, which indicates the expected scale and scope of future petroleum activity in the Barents Sea. After this three scenarios are presented. They all have 2030 as their time horizon.
    [Show full text]
  • Alexander P. Lisitsyn Liudmila L. Demina Editors the White Sea
    The Handbook of Environmental Chemistry 82 Series Editors: Damià Barceló · Andrey G. Kostianoy Alexander P. Lisitsyn Liudmila L. Demina Editors Sedimentation Processes in the White Sea The White Sea Environment Part II The Handbook of Environmental Chemistry Founding Editor: Otto Hutzinger Editors-in-Chief: Damia Barcelo´ • Andrey G. Kostianoy Volume 82 Advisory Editors: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks More information about this series at http://www.springer.com/series/698 Sedimentation Processes in the White Sea The White Sea Environment Part II Volume Editors: Alexander P. Lisitsyn Á Liudmila L. Demina With contributions by T. N. Alexсeeva Á D. F. Budko Á O. M. Dara Á L. L. Demina Á I. V. Dotsenko Á Y. A. Fedorov Á A. A. Klyuvitkin Á A. I. Kochenkova Á M. D. Kravchishina Á A. P. Lisitsyn Á I. A. Nemirovskaya Á Y. A. Novichkova Á A. N. Novigatsky Á A. E. Ovsepyan Á N. V. Politova Á Y. I. Polyakova Á A. E. Rybalko Á V. A. Savitskiy Á L. R. Semyonova Á V. P. Shevchenko Á M. Y. Tokarev Á A. Yu. Lein Á V. A. Zhuravlyov Á A. A. Zimovets Editors Alexander P. Lisitsyn Liudmila L. Demina Shirshov Inst. of Oceanology Shirshov Inst. of Oceanology Russian Academy of Sciences Russian Academy of Sciences Moscow, Russia Moscow, Russia ISSN 1867-979X ISSN 1616-864X (electronic) The Handbook of Environmental Chemistry ISBN 978-3-030-05110-5 ISBN 978-3-030-05111-2 (eBook) https://doi.org/10.1007/978-3-030-05111-2 Library of Congress Control Number: 2018964918 © Springer Nature Switzerland AG 2018 This work is subject to copyright.
    [Show full text]
  • Waterton Lakes National Park • Common Name(Order Family Genus Species)
    Waterton Lakes National Park Flora • Common Name(Order Family Genus species) Monocotyledons • Arrow-grass, Marsh (Najadales Juncaginaceae Triglochin palustris) • Arrow-grass, Seaside (Najadales Juncaginaceae Triglochin maritima) • Arrowhead, Northern (Alismatales Alismataceae Sagittaria cuneata) • Asphodel, Sticky False (Liliales Liliaceae Triantha glutinosa) • Barley, Foxtail (Poales Poaceae/Gramineae Hordeum jubatum) • Bear-grass (Liliales Liliaceae Xerophyllum tenax) • Bentgrass, Alpine (Poales Poaceae/Gramineae Podagrostis humilis) • Bentgrass, Creeping (Poales Poaceae/Gramineae Agrostis stolonifera) • Bentgrass, Green (Poales Poaceae/Gramineae Calamagrostis stricta) • Bentgrass, Spike (Poales Poaceae/Gramineae Agrostis exarata) • Bluegrass, Alpine (Poales Poaceae/Gramineae Poa alpina) • Bluegrass, Annual (Poales Poaceae/Gramineae Poa annua) • Bluegrass, Arctic (Poales Poaceae/Gramineae Poa arctica) • Bluegrass, Plains (Poales Poaceae/Gramineae Poa arida) • Bluegrass, Bulbous (Poales Poaceae/Gramineae Poa bulbosa) • Bluegrass, Canada (Poales Poaceae/Gramineae Poa compressa) • Bluegrass, Cusick's (Poales Poaceae/Gramineae Poa cusickii) • Bluegrass, Fendler's (Poales Poaceae/Gramineae Poa fendleriana) • Bluegrass, Glaucous (Poales Poaceae/Gramineae Poa glauca) • Bluegrass, Inland (Poales Poaceae/Gramineae Poa interior) • Bluegrass, Fowl (Poales Poaceae/Gramineae Poa palustris) • Bluegrass, Patterson's (Poales Poaceae/Gramineae Poa pattersonii) • Bluegrass, Kentucky (Poales Poaceae/Gramineae Poa pratensis) • Bluegrass, Sandberg's (Poales
    [Show full text]