NWCG Standards for Airspace Coordination

Total Page:16

File Type:pdf, Size:1020Kb

NWCG Standards for Airspace Coordination A publication of the National Wildfire Coordinating Group NWCG Standards for Airspace Coordination PMS 520 May 2018 NWCG Standards for Airspace Coordination MAY 2018 PMS 520 The NWCG Standards for Airspace Coordination standardizes safe, consistent approaches to issues involving airspace and agency land management responsibilities. This is an educational process that will contribute to a clear understanding of flight and coordination within the complexities of the National Airspace System (NAS). Additionally, it promotes airspace coordination with respect to environmental issues. The objectives of the NWCG Standards for Airspace Coordination are: Describe the components of the NAS, and define airspace coordination responsibilities among the various agencies and users of the NAS. Describe the processes and procedures that an agency should employ so that users may: o Coordinate, deconflict, and conduct flight missions safely within the NAS with respect to safety concerns and operational requirements. o Coordinate, deconflict, and respond to airspace issues relating to the environment. Provide educational material aimed at both agency and military aviation and airspace managers that will contribute to a clear understanding of the complex nature of the airspace in which we all share. Identify airspace coordination responsibilities for agency personnel. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies. However, the decision to adopt and utilize them is made independently by the individual member agencies and communicated through their respective directives systems. Table of Contents Chapter 1 – Introduction ..........................................................................................................................1 Purpose ....................................................................................................................................................1 Background .............................................................................................................................................1 Participating Agencies ............................................................................................................................2 Chapter 2 – Agency Organizations, Roles and Responsibilities, and Airspace Committees ..............3 Introduction .............................................................................................................................................3 Federal Aviation Administration.............................................................................................................3 Department of Defense ...........................................................................................................................7 Land Management Agencies (USFS, DOI, and States) ..........................................................................9 Land Management Agencies Roles and Responsibilities .....................................................................11 Airspace Coordination Groups and Committees...................................................................................20 Chapter 3 – Airspace Basics....................................................................................................................23 The National Airspace System ..............................................................................................................23 Understanding VFR/IFR Flight Terms .................................................................................................23 Airspace Categories ..............................................................................................................................23 Overview of Airspace Designations of the United States .....................................................................24 Airspace Classifications ........................................................................................................................25 En Route Structures...............................................................................................................................32 Special Use Airspace (SUA) .................................................................................................................35 Military Operations Areas .....................................................................................................................39 Military Training Routes .......................................................................................................................43 Other Military Airspace Structures .......................................................................................................49 National Security Areas ........................................................................................................................53 Air Defense Identification Zone (ADIZ) ..............................................................................................54 Special Conservation Areas ..................................................................................................................55 Federal Aviation Regulations of the 14 CFR ........................................................................................57 Chapter 4 – Airspace Hazards ................................................................................................................59 Introduction ...........................................................................................................................................59 Airspace Hazards ..................................................................................................................................59 Bird and Animal Wildlife Strikes .........................................................................................................61 Patrol Aircraft........................................................................................................................................62 Military Chaff and Flares ......................................................................................................................62 Ground-Based Operations .....................................................................................................................62 Moored Balloon and Kites ....................................................................................................................63 Amateur Rockets ...................................................................................................................................63 Unmanned Free Balloons ......................................................................................................................64 Model Aircraft .......................................................................................................................................64 Unmanned Aerial Systems (UAS) ........................................................................................................64 Lasers ..................................................................................................................................................64 Blasting .................................................................................................................................................65 Obstacles, Antenna Farms, and Power Lines ........................................................................................65 NWCG Standards for Airspace Coordination i Chapter 5 – Airspace Tools and Skills ...................................................................................................67 Introduction ...........................................................................................................................................67 Charts and Sectionals ............................................................................................................................67 Sectional Aeronautical Charts ...............................................................................................................68 Helicopter Route Charts ........................................................................................................................71 En Route Low Altitude Charts ..............................................................................................................71 En Route High Altitude Charts .............................................................................................................71 Digital Aeronautical Charts...................................................................................................................71 DoD Publications ..................................................................................................................................72 Other Publications .................................................................................................................................75 Technology ............................................................................................................................................76 Airspace Coordination Skills ................................................................................................................80 Compass Headings ................................................................................................................................81
Recommended publications
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • Runway Safety Spring 2021 Report
    Graphical NOTAM Interface For Improving Efficiency of Reporting NOTAM Information April 2021 Design Challenge: Runway Safety/Runway Incursions/Runway Excursions Challenge E: Optimizing application of NextGen technology to improve runway safety in particular and airport safety in general. Team Members: Undergraduate Students: Matthew Bacon, Gregory Porcaro, Andrew Vega Advisor’s Name: Dr. Audra Morse Michigan Technological University Table of Contents | 1 02 Executive Summary Runway excursions are a type of aviation incident where an aircraft makes an unsafe exit from the runway. According to the Ascend World Aircraft Accident Summary (WAAS), 141 runway excursion accidents involving the Western-built commercial aircraft fleet occurred globally from 1998 to 2007, resulting in 550 fatalities; 74% of landing phase excursions were caused by either weather-related factors or decision-making factors (Ascend, 2007). One mitigation strategy is training pilots how to interpret Runway Condition Codes (RWYCCs) to understand runway conditions. Recent developments such as NextGen and Electronic Flight Bags (EFBs) have improved the quality of weather condition reporting. However, Notices to Airmen (NOTAMs), the primary source of runway condition information and any other irregularities in airspace, are still presented to pilots in an inefficient format contributing to runway excursions and safety concerns NOTAMs consist of confusing abbreviations and do not effectively convey the relative importance of information. The team developed an Electronic Flight Bag (EFB) user interface that provides a graphical representation of NOTAM and weather information to improve how pilots receive condition changes at airports. The graphical NOTAM interface utilizes Automatic Dependent Surveillance-Broadcast (ADS-B) to receive real time NOTAM updates.
    [Show full text]
  • Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
    Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system.
    [Show full text]
  • Advanced Concept of the National Airspace System of 2015: Human Factors Considerations For
    Advanced Concept of the National Airspace System of 2015: Human Factors Considerations for Air Traffic Control Ben Willems, Human Factors Team – Atlantic City, ATO-P Anton Koros, Northrop Grumman Information Technology June 2007 DOT/FAA/TC-TN-07/21 This document is available to the public through the National Technical Information Service (NTIS), Springfield, VA 22161. A copy is retained for reference at the William J. Hughes Technical Center Library. U.S. Department of Transportation Federal Aviation Administration William J. Hughes Technical Center Atlantic City International Airport, NJ 08405 ote technical note NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. This document does not constitute Federal Aviation Administration (FAA) certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the FAA, William J. Hughes Technical Center’s full-text Technical Reports Web site: http://actlibrary.tc.faa.gov in Adobe® Acrobat® portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. DOT/FAA/TC-TN-07/21 4. Title and Subtitle 5. Report Date Advanced Concept of the National Airspace System of 2015: Human Factors June 2007 Considerations for Air Traffic Control 6. Performing Organization Code AJP-6110 7.
    [Show full text]
  • John V. Augustin, “ICAO and the Use of Force Against Civil Aerial Intruders”
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm mater. UMI films the t.xt directly from the original or copy submitted. ThuI, sorne thesil and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quallty of thl. reproduction 1••pendent upon the quallty of the cOPY IUbmittecl. Broken or indistinct print, coIored or poor qUBlity illustrations and photographs, print bleedthrough, subsfanctard margins, and improper alignment can adverselyaffect reproduction. ln the unlikely .vent that the adhor did not send UMI a comptete m8l1uscript and there are mi.ing pagel, the.. will be noted. AllO, if unauthortzed copyright material had ta be removed, a note will indicat8 the deletian. Qversize material. (•.g., map., drawingl, chartl) are reproduced by sectioning the original, begiming al the upper Ieft·...d corner 8I1d continui"", tram Ieft to right in equal sec:tionI with small overtaPl. Photographs induded in the original manuscript h8ve been reprodUCld xerographically in thil capy. Higher quality 8- x 9- bl8ck and white photographie prints are aVllilllble for .,y photogl'8Phl or illustrations 8ppearing in thil capy for an addlticnll charge. Contllct UMI direclly 10 ORIer. Bell & HoweIIlnf0nn8tion and Leaming 300 North Z8eb Raad. Ann Arbor. MI 48108-1348 USA 800-521-0800 • ICAO AND THE USE OF FORCE AGAINST CIVIL AERIAL INTRUDERS by John V. Augustin A thesis submitted ta the Faculty ofGraduate Studies and Research in partial fulfilment of the degree of Master of Laws (LL.M.) Institute of Air and Space Law Faculty of Law, McGill University Montreal, Quebec, canada August 1998 1.V.
    [Show full text]
  • Air Defense Identification Zone (ADIZ) in the Light of Public International Law
    Air Defense Identification Zone (ADIZ) in the light of Public International Law Air Defense Identification Zone (ADIZ) in the light of Public International Law ZOLTÁN PAPP Phd Student, Pázmány Péter Catholic University, In-house legal counsel, HungaroControl Pte Ltd. Co.* The Air Defense Identification Zone (ADIZ) is established to serve the national security interests of the state. Maintaining ADIZ becomes fundamentally relevant from the perspective of international law when such a zone extends into airspace suprajacent to international waters. Materially, two considerations are most relevant in terms of ADIZ conforming to international law, both potentially creating a conflict with ADIZ rules: Contracting Parties to the Chicago Convention on International Civil Aviation have delegated rule-making powers to enact rules of the air with a view to safeguarding the safety of air traffic in international airspace to the ICAO Council. Furthermore, in international airspace the state of registry generally enjoys exclusive jurisdiction with respect to the aircraft carrying its national mark. In this paper ADIZ will be deemed as exercising jurisdiction over extraterritorial acts by the state maintaining ADIZ; hence, the prescriptive and enforcement distinction adds an additional layer to the analysis of the international legal context of ADIZ. The response to as to how ADIZ fits in the international legal framework may differ depending on whether one seeks to identify permissive rules of international law related to the maintenance of ADIZ in international airspace or the non-existence of prohibitive rules sufficient to justify conformance with international law. Keywords: ADIZ, air law, law of the sea, Chicago Convention on International Civil Aviation, jurisdiction, use of force, international customary law, civil aircraft, state of registry 1.
    [Show full text]
  • EHAM — AMSTERDAM/Schiphol
    AIP NETHERLANDS AD 2.EHAM-1 04 FEB 2016 EHAM — AMSTERDAM/Schiphol EHAM AD 2.1 AERODROME LOCATION INDICATOR AND NAME EHAM — AMSTERDAM/Schiphol EHAM AD 2.2 AERODROME GEOGRAPHICAL AND ADMINISTRATIVE DATA 1 ARP co-ordinates and site at AD 52°18'29"N 004°45'51"E 062 DEG GEO 135 m from TWR. 2 Direction and distance from (city) 4.9 NM SW of Amsterdam. 3 Elevation/reference temperature -11 ft AMSL/20.4°C (JUL). 4 Geoid undulation at AD ELEV PSN 142 ft. 5 MAG VAR/annual change 0°E (2010)/8'E. 6 AD operator, postal address, telephone, telefax, Post: Amsterdam Airport Schiphol email, AFS, website P.O. Box 7501 1118 ZG Schiphol-Centre Tel: +31 (0)20 601 9111 (Airport all EXT) +31 (0)20 601 2116 (Airport office/Apron Management Service) +31 (0)20 601 2115 (Airport Authority) Fax: +31 (0)20 604 1475 AFS: EHAMYDYX 7 Types of traffic permitted (IFR/VFR) IFR/VFR 8 Remarks 1. Airport for use by national and international civil air transport with all types of aircraft. 2. Upon request, contact the airside operations manager (AOM) on channel 130.480 call sign "Airport One" (not monitored H24). 3. Changes in the availability of the runway and taxiway infrastructure at the airport will be promulgated by NOTAM. The NOTAM can refer to the website http://www.eham.aero where visual material relating to this subject will be shown. This material may only be used in combination with the current NOTAM. EHAM AD 2.3 OPERATIONAL HOURS 1 AD operator H24 2 Customs and immigration H24 3 Health and sanitation H24 4 AIS briefing office H24 self-briefing Tel: +31 (0)20 406 2315 +31 (0)20 406 2316 Fax: +31 (0)20 648 4417 5 ATS reporting office (ARO) H24 Tel: +31 (0)20 406 2315 +31 (0)20 406 2316 +31 (0)20 406 2323 Fax: +31 (0)20 648 4417 6 MET briefing office H24 7 ATS H24 8 Fuelling Schiphol-Centre: H24.
    [Show full text]
  • Countywide Airspace Usage
    A PPENDIX I Countywide Airspace Usage Riverside County is within one of the busiest and most complex sections of airspace in the United States, handling over 4.3 million operations annually. To better understand the magnitude of these op- erations and complexities of this system, Map 1 depicts Instrument Flight Rule (IFR) operations for the six busiest airports in the area for a 24-hour period on January 26, 1996. This exhibit does not depict operations from the 14 airports in Riverside County Airport Land Use Compatibility Plan update. AIRSPACE STRUCTURE Since the advent of aviation, nations have established procedures within their boundaries to regulate the use of airspace. Airspace is broadly classified as either “controlled” or “uncontrolled” in the United States. The difference between the two categories relates primarily to requirements for pilot qualifica- tions, ground-to-air communications, navigation and traffic services, and weather conditions. Six classes of airspace have been designated in the United States. Airspace designated as Class A, B, C, D, or E is considered controlled airspace. Aircraft operating within controlled airspace are subject to vary- ing requirements for positive air traffic control. The airspace in Riverside County, as illustrated on Map 2, is constantly occupied by aircraft arriving and departing from other airports in the region. Frequently, overflights experienced in communities near Riverside County airports are not the result of operations at nearby airports, but from aircraft us- ing airports outside Riverside County. After the preparation of this plan, additional approaches have been established for aircraft arriving at Los Angeles International Airport. These new approaches were not included as part of the map development process for this plan.
    [Show full text]
  • Arkansas Aviation Operation Plan Glossary of Terms A
    Arkansas Aviation Operations –March 2014 Glossary of Terms Glossary v1.r1 Arkansas Aviation Operation Plan Glossary of Terms A ABORT To terminate a preplanned aircraft maneuver; e.g. an aborted takeoff 29 ADVISORY FREQUENCY The appropriate frequency to be used for Airport Advisory Service 29 AIR CARRIER A person who undertakes directly by lease, or other arrangement, to engage in air transportation.30 AIRCRAFT CATERGORY The term “category,” as used with respect to the certification of aircraft, means a grouping of aircraft based on their intended use or operating limitations, for example, normal, utility, acrobatic, or primary. For purposes of this order, gliders and balloons will be referred to as categories rather than classifications.30 AIR TRAFFIC Aircraft operating in the air or on an airport surface, exclusive of loading ramps and parking areas 29 AIR TRAFFIC CLEARANCE An authorization by air traffic control for the purpose of preventing collision between known aircraft, for an aircraft to proceed under specified traffic conditions within controlled airspace. The pilot-in-command of an aircraft may not deviate from the provisions of a visual flight rules (VFR) or instrument flight rules (IFR) air traffic clearance except in an emergency or unless an amended clearance has been obtained 29 AIR TRAFFIC CONTROL A service operated by appropriate authority to promote the safe, orderly and expeditious flow of air traffic 29 AIRPORT MARKING AID Markings used on runway and taxiway surfaces to identify a specific runway, a runway threshold, a centerline, a hold line, etc. A runway should be marked in accordance with its present usage such as: a.
    [Show full text]
  • Easy Access Rules for Standardised European Rules of the Air (SERA)
    Easy Access Rules for Standardised European Rules of the Air (SERA) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published December 20201 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 213| Dec 2020 Easy Access Rules for Standardised European Rules Disclaimer of the Air (SERA) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the officially published regulations with the related acceptable means of compliance and guidance material (including the amendments) adopted so far.
    [Show full text]
  • An Analysis of Airspace Violations and Pilot Report Data
    NASA/CR—2005-213923 Violations of Temporary Flight Restrictions and Air Defense Identification Zones: An Analysis of Airspace Violations and Pilot Report Data Michael Zuschlag John A. Volpe National Transportation Systems Center, Cambridge, Massachusetts September 2005 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, Information (STI) Program Office plays a key seminars, or other meetings sponsored or part in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA’s scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. • TECHNICAL TRANSLATION. English- The Program Office is also NASA’s institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to research and development activities. These results NASA’s mission. are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office’s diverse offerings include • TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results ... even providing videos.
    [Show full text]
  • Icao Definitions Flight Procedures Icao Rules Of
    22 AUG08 AIRTRAFFICCONTROL 1 INTRODUCTION This AirTrafficControlSectionisdesignedtoprovide pilots with InternationalCivil Aviation Organization (ICAO) Standards, Recommended Practicesand P rocedures forinternational operations.Inaddition, on astate-by-statebasis,flightproceduresuniquetoeachstate,ordifferent from thepublishedICAOrules andprocedures, areincluded. Each part of this AirTraffic ControlSection is describedbelow. ICAODEFINITIONS durespage.Ifthe state hasexceptions to thepub- Thesedefinitions areapplicable to theICAOinfor- lishedholding tables, acomplete tabulation of hold- mation contained in this ATCsection andhavebeen ing speeds is provided. extractedfromappropriateICAOpublications. PROCEDURE LIMITATIONS AND OPTIONS FLIGHT PROCEDURES Statementsconcerning conformance with ICAO Details of thePANS-OPS instrumentdepartureand PANS-OPS areincludedhere. The latestversion approach procedure informationusefultothe pilot-in- of PANS-OPS,VolumeIis provided in theICAO commandinthe execution of an instrument departure Flight Procedures chapter. Thestatement “Instru- or approach procedureare included. Theinformation ment Procedures areinconformancewith thenew is extractedfromthe latestamended edition of Pro- PANS-OPS Document8168,VolumeII” indicates ceduresfor AirNavigation Services—Aircraft Oper- compliance with this document. ations, Document 8168, VolumeI,FlightProcedures. Procedurelimitations, non-standard circling pro- References to earliereditionsare included. tectedarea, airspeedrestrictions, andsimilartype informationisincluded.Significantstatedifferences
    [Show full text]