Aurora Kinases: Shining Lights on the Therapeutic Horizon?

Total Page:16

File Type:pdf, Size:1020Kb

Aurora Kinases: Shining Lights on the Therapeutic Horizon? Oncogene (2005) 24, 5005–5015 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc REVIEW Aurora kinases: shining lights on the therapeutic horizon? Paul D Andrews*,1 1Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK The Aurora kinases have been implicated in tumorigenesis to ensure accurate chromosome segregation and timely and are important regulators of diverse cell cycle events, cytokinesis. The approximate execution points of ranging from the entry into mitosis,centrosome function, Aurora A and B are shown in Figure 2. Aurora C’s mitotic spindle formation,chromosome biorientation and regulation and localization have remained obscure until segregation,and cytokinesis. The recent identification of recently (Li et al., 2004b; Sasai et al., 2004) and its real novel binding partners and key downstream effectors, function is unknown. together with new small-molecule inhibitors that display With over protein 500 kinases in the human genome efficacy against tumours,heralds an upsurge of interest in grouped into at least 20 structurally related families, the these critical kinases. This review details new develop- specificity of kinase inhibitors is a critical concern when ments in the field and analyses the potential of Aurora administrated in therapy. However, the recognition that kinases as anticancer targets. the selective inhibition of individual protein kinases is Oncogene (2005) 24, 5005–5015. doi:10.1038/sj.onc.1208752 not only possible, but has therapeutic efficacy (as exemplified by the success of the Bcl-Abl kinase Keywords: Aurora kinase; microtubule; spindle inhibitor, Gleevec, for the treatment of chronic myeloid checkpoint; centrosome; kinetochore; therapy leukemia) has led to a huge interest in the development of kinase inhibitors for cancer therapy. Here, I review recent advances in our understanding of Aurora kinase function, critically assess how detailed knowledge of their function could be utilized in cancer Introduction therapy and go on to discuss whether the Aurora kinases are indeed suitable targets for therapeutic intervention. Many fundamental processes in cancer cells are regu- lated by protein phosphorylation: kinases regulate the cell’s response to DNA damage, control DNA replica- Aurora A: cancer,centrosomes and the p53 connection tion, regulate entry into, passage through and exit from mitosis, and ensure accurate chromosome segregation; The human Aurora A gene, STK15, resides in a region they monitor nutrient availability and control cell of the genome (20q13.2) often amplified in certain growth pathways; and they regulate apoptosis and cancers (Bar-Shira et al., 2002). Aurora A overexpres- hence govern a cell’s commitment either to live or to die. sion occurs in a high proportion of breast, colorectal In metazoans, there are three highly related Aurora and gastric cancers (Tanaka et al., 1999; Sakakura kinases: Aurora A, B and C (reviewed in Andrews et al., et al., 2001; Goepfert et al., 2002; Gritsko et al., 2003; 2003; Carmena and Earnshaw, 2003; Brown et al., Moreno-Bueno et al., 2003; Fraizer et al., 2004; Jeng 2004). Despite their relatedness at the sequence level, the et al., 2004; Kamada et al., 2004; Tong et al., 2004). localization and functions of Aurora A and B are largely While these data are largely correlative, more compel- non-overlapping. Aurora A is localized at the centro- ling was the observation that overexpression of a some from the time of centrosome duplication through constitutively active mutant of Aurora A in rat1 cells to mitotic exit and regulates centrosome function. In led to neoplastic transformation, suggesting Aurora A is contrast, Aurora B is localized to inner-centromeric a bona fide oncogene (Bischoff et al., 1998). However, in chromatin from prophase until the metaphase–anaphase a recent report, controlled overexpression of Aurora A transition, whereupon it is relocalized to both the (STK6) in mice led to mitotic defects and mammary microtubules in the spindle midzone (and the cell cortex hyperplasia, but not malignant transformation (Zhang at the cleavage furrow) during telophase, ending up in et al., 2004). Aurora A was also recently shown to be a the midbody throughout cytokinesis (see Figure 1; low-penetrance skin tumour-susceptibility gene, with an reviewed in Andrews et al., 2003; Carmena and Earn- allelic variant (Ile31), frequently found amplified, whose shaw, 2003; Meraldi et al., 2004). Such behaviour marks presence was correlated with aneuploidy in human colon out Aurora B as a canonical ‘chromosome passenger’ tumour cells, with the Ile31 allele transforming rat1 cells protein (Earnshaw and Cooke, 1991), whose function is more potently than the more common Phe31 allele (Ewart-Toland et al., 2003). A separate study also found *Correspondence: PD Andrews; E-mail: [email protected] a correlation between the Ile31 allele and the riskof Aurora kinases: shining lights on the therapeutic horizon? PD Andrews 5006 Figure 1 Localization of Aurora A and B. Aurora A and B localize to different cellular structures. Aurora A localization to centrosome/spindle poles in metaphase and telophase (upper panels). Aurora B localization to the inner centromere from prometaphase to metaphase and then the spindle midzone microtubules in late anaphase/telophase (lower panels) and in the midbody during cytokinesis (not shown) of Aurora A levels (Mao et al., 2004). Further evidence pointing to a complexity in the regulation of Aurora levels comes from a recent study in rats, where estrogen was shown to lead to increases in Aurora A protein and mRNA levels, centrosome amplification, chromosome instability and ultimately to breast cancer (Li et al., 2004a). Aurora A’s role in centrosome function and duplica- tion is well established, yet still poorly understood (reviewed by Andrews et al., 2003; Meraldi et al., 2004). Disruption of Aurora A function delocalizes several components of the centrosome. Aurora A phosphor- ylates and recruits microtubule-associated proteins such as the kinesin Eg5 (Giet et al., 1999) and the acidic coiled-coil protein, TACC (Giet et al., 2002; Bellanger and Gonczy, 2003; Conte et al., 2003) to the centrosome. Recently, the human Lats2 tumour-suppressor protein Figure 2 Aurora kinase cell cycle execution points and substrates. was also shown to be recruited to the centrosome via Schematic diagram illustrating the known execution points and Aurora A-mediated phosphorlyation (Toji et al., 2004). substrates of Aurora A and B across the cell cycle. The substrates Aurora A appears to control entry into mitosis by phosphorylated in each phase of the cell cycle are color coded: regulating either the association of the cell cycle orange circles indicate Aurora A substrates and green circles indicate Aurora B substrates. Ipl1p substrates are indicated as a machinery with centrosomes, or possibly even directly double green and orange line (Hirota et al., 2003; Dutertre et al., 2004). Aurora A binds and phosphorylates the breast cancer-associated gene product, BRCA1, in vitro and in vivo and regulates breast carcinoma (Sun et al., 2004). Aurora A over- its function (Ouchi et al., 2004). Aurora A also regulates expression can occur because of gene amplification, human telomerase reverse transcriptase mRNA levels transcriptional induction or post-translational stabiliza- through c-myc, in ovarian and breast epithelial carcino- tion (Farruggio et al., 1999; Crane et al., 2004). Indeed, mas (Yang et al., 2004b). The inter-relationship bet- in a recent study the p53-dependent loss of the tumour ween all these pathways is, however, still obscure (see suppressor ubiquitin ligase, hCDC4 led to a stabilization Figure 3). Oncogene Aurora kinases: shining lights on the therapeutic horizon? PD Andrews 5007 Aurora A regulation is complex and involves the become attached to microtubules emanating from interplay between the small GTPase Ran and the spindle opposite spindle poles in a process known as biorienta- protein TPX2 as well as regulatory input from the type-1 tion (reviewed by Andrews et al., 2003; see Figure 4). protein phosphatase, PP1 (reviewed by Andrews et al., Errors in biorientation lead to CIN. Commonly 2003; Gruss and Vernos, 2004). Ran releases TPX2 from encountered errors include merotelic attachments (one importins a and b allowing TPX2 to bind Aurora A, kinetochore attached to microtubules from both poles) targeting it to spindle microtubules at the pole. TPX2 and syntelic attachments (both kinetochores attached to activates Aurora A activity by stimulating Aurora A microtubules from the same pole), as illustrated in autophosphorylation and by protecting it from the Figure 4. The cell’s surveillance mechanisms (check- inhibitory action of PP1 (Eyers et al., 2003; Tsai et al., points; discussed below) that monitor the attachment 2003). The crystal structure of activated Aurora A in and biorientation state of each chromosome give complex with a TPX2 fragment showed TPX2 binding is correction pathways sufficient time to ensure that all sufficient to allow autophosphorylation of the two chromosomes are configured properly, and thereby activatory T-loop theonines, allowing Aurora A to segregated equally in anaphase. Aurora B plays a key adopt a conformation similar to the ‘active’ conforma- role in this correction process. tion of other Ser/Thr kinases (Bayliss et al., 2003). This Aurora B (Ipl1p) phosphorylates a number of level of detailed knowledge is invaluable
Recommended publications
  • Aurora Kinase a in Gastrointestinal Cancers: Time to Target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4*
    Katsha et al. Molecular Cancer (2015) 14:106 DOI 10.1186/s12943-015-0375-4 REVIEW Open Access Aurora kinase A in gastrointestinal cancers: time to target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4* Abstract Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings. Keywords: Aurora kinases, Therapy, AURKA inhibitors, MNL8237, Alisertib, Gastrointestinal, Cancer, Signaling pathways Introduction stage [9-11]. Furthermore, AURKA is critical for Mitotic kinases are the main proteins that coordinate ac- bipolar-spindle assembly where it interacts with Ran- curate mitotic processing [1].
    [Show full text]
  • Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
    [Show full text]
  • RASSF1A Interacts with and Activates the Mitotic Kinase Aurora-A
    Oncogene (2008) 27, 6175–6186 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE RASSF1A interacts with and activates the mitotic kinase Aurora-A L Liu1, C Guo1, R Dammann2, S Tommasi1 and GP Pfeifer1 1Division of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, USA and 2Institute of Genetics, University of Giessen, Giessen, Germany The RAS association domain family 1A (RASSF1A) gene tumorigenesis and carcinogen-induced tumorigenesis is located at chromosome 3p21.3 within a specific area of (Tommasi et al., 2005; van der Weyden et al., 2005), common heterozygous and homozygous deletions. RASS- supporting the notion that RASSF1A is a bona fide F1A frequently undergoes promoter methylation-asso- tumor suppressor. However, it is not fully understood ciated inactivation in human cancers. Rassf1aÀ/À mice how RASSF1A is involved in tumor suppression. are prone to both spontaneous and carcinogen-induced The biochemical function of the RASSF1A protein is tumorigenesis, supporting the notion that RASSF1A is a largely unknown. The homology of RASSF1A with the tumor suppressor. However, it is not fully understood how mammalian Ras effector novel Ras effector (NORE)1 RASSF1A is involved in tumor suppression pathways. suggests that the RASSF1A gene product may function Here we show that overexpression of RASSF1A inhibits in signal transduction pathways involving Ras-like centrosome separation. RASSF1A interacts with Aurora-A, proteins. However, recent data indicate that RASSF1A a mitotic kinase. Surprisingly, knockdown of RASS- itself binds to RAS only weakly and that binding to F1A by siRNA led to reduced activation of Aurora-A, RAS may require heterodimerization of RASSF1A and whereas overexpression of RASSF1A resulted in in- NORE1 (Ortiz-Vega et al., 2002).
    [Show full text]
  • Targeting the Hippo Pathway in Prostate Cancer: What's New?
    cancers Review Targeting the Hippo Pathway in Prostate Cancer: What’s New? Kelly Coffey Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] Simple Summary: Prostate cancer is the most commonly diagnosed cancer in men in the UK, accounting for the deaths of over 11,000 men per year. A major problem in this disease are tumours which no longer respond to available treatments. Understanding how this occurs will reveal new ways to treat these patients. In this review, the latest findings regarding a particular group of cellular factors which make up a signalling network called the Hippo pathway will be described. Accumulating evidence suggests that this network contributes to prostate cancer progression and resistance to current treatments. Identifying how this pathway can be targeted with drugs is a promising area of research to improve the treatment of prostate cancer. Abstract: Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ.
    [Show full text]
  • Mtor REGULATES AURORA a VIA ENHANCING PROTEIN STABILITY
    mTOR REGULATES AURORA A VIA ENHANCING PROTEIN STABILITY Li Fan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University December 2013 Accepted by the Graduate Faculty, of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Lawrence A. Quilliam, Ph.D., Chair Doctoral Committee Simon J. Atkinson, Ph.D. Mark G. Goebl, Ph.D. October 22, 2013 Maureen A. Harrington, Ph.D. Ronald C. Wek, Ph.D. ii © 2013 Li Fan iii DEDICATION I dedicate this thesis to my family: to my parents, Xiu Zhu Fan and Shu Qin Yang, who have been loving, supporting, and encouraging me from the beginning of my life; to my husband Fei Huang, who provided unconditional support and encouragement through these years; to my son, David Yan Huang, who has made my life highly enjoyable and meaningful. iv ACKNOWLEDGMENTS I sincerely thank my mentor Dr. Lawrence Quilliam for his guidance, motivation, support, and encouragement during my dissertation work. His passion for science and the scientific and organizational skills I have learned from Dr. Quilliam made it possible for me to achieve this accomplishment. Many thanks to Drs. Ron Wek, Mark Goebl, Maureen Harrington, and Simon Atkinson for serving on my committee and providing constructive suggestions and technical advice during my Ph.D. program. I have had a pleasurable experience working with all the people in our laboratory. Thanks Drs. Justin Babcock and Sirisha Asuri, and Mr.
    [Show full text]
  • Chromosome Missegregation in Human Cells Arises Through Specific
    Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors Sarah L. Thompson and Duane A. Compton1 Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and Cancer Mechanisms Program, Norris Cotton Cancer Center, Lebanon, NH 03766 Edited by John W. Sedat, University of California, San Francisco School of Medicine, San Francisco, CA, and approved September 15, 2011 (received for review June 17, 2011) Most solid tumors are aneuploid, and many missegregate chro- cur, particularly in early phases of mitosis, as a consequence mosomes at high rates in a phenomenon called chromosomal of the stochastic interactions between microtubules and kinet- instability (CIN). CIN reflects the erosion of mitotic fidelity, and it ochores (11). A prominent error is when a single kinetochore correlates with poor patient prognosis and drug resistance. The binds microtubules oriented toward both spindle poles. This most common mechanism causing CIN is the persistence of improper error is called merotely (12, 13). The persistence of merotely kinetochore–microtubule attachments called merotely. Chromo- undermines chromosome segregation because merotelic kinet- somes with merotelic kinetochores often manifest as lagging chro- ochores experience poleward force toward both spindle poles. As mosomes in anaphase, suggesting that lagging chromosomes fail a consequence, merotely often results in the appearance of lag- to segregate properly. However, it remains unknown whether the ging chromosomes in anaphase, and tumor cells with CIN have lagging chromosomes observed in anaphase segregate to the cor- elevated rates of lagging chromosomes and merotelic attach- rect or incorrect daughter cell. To address this question, we tracked ments (9). Moreover, it was shown that increasing the correction the segregation of a single human chromosome during cell division rate of merotely by stimulating the dynamics of k-MT attachment by using LacI-GFP to target an integrated LacO array.
    [Show full text]
  • Covalent Aurora a Regulation by the Metabolic Integrator Coenzyme A
    bioRxiv preprint doi: https://doi.org/10.1101/469585; this version posted November 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Covalent Aurora A regulation by the metabolic integrator coenzyme A Yugo Tsuchiya1#, Dominic P Byrne2#, Selena G Burgess3#, Jenny Bormann4, Jovana Bakovic1, Yueyan Huang1, Alexander Zhyvoloup1, Sew Peak-Chew5, Trang Tran6, Fiona Bellany6, Alethea Tabor6, AW Edith Chan7, Lalitha Guruprasad8, Oleg Garifulin9, Valeriy Filonenko9, Samantha Ferries10, Claire E Eyers10, John Carroll4^, Mark Skehel5, Richard Bayliss3*, Patrick A Eyers2* and Ivan Gout1,9* 1Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK 2Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK 3School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK 4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 5MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK 6Department of Chemistry, University College London, London WC1E 6BT, UK 7Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK 8School of Chemistry, University of Hyderabad, Hyderabad 500 046, India 9Department of Cell
    [Show full text]
  • Quantitative Conformational Profiling of Kinase Inhibitors Reveals Origins of Selectivity for Aurora Kinase Activation States
    Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states Eric W. Lakea, Joseph M. Murettab, Andrew R. Thompsonb, Damien M. Rasmussenb, Abir Majumdara, Erik B. Faberc, Emily F. Ruffa, David D. Thomasb, and Nicholas M. Levinsona,d,1 aDepartment of Pharmacology, University of Minnesota, Minneapolis, MN 55455; bDepartment of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455; cDepartment of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455; and dMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 Edited by Kevan M. Shokat, University of California, San Francisco, CA, and approved November 7, 2018 (received for review June 28, 2018) Protein kinases undergo large-scale structural changes that tightly lytically important Asp–Phe–Gly (DFG) motif, located on the regulate function and control recognition by small-molecule in- flexible activation loop of the kinase, is flipped relative to its hibitors. Methods for quantifying the conformational effects of orientation in the active state (referred to as “DFG-out,” in inhibitors and linking them to an understanding of selectivity contrast to the active “DFG-in” state). The observation that the patterns have long been elusive. We have developed an ultrafast inactive DFG-out states of kinases are more divergent than the time-resolved fluorescence methodology that tracks structural catalytically competent DFG-in state has led to a focus on type II movements of the kinase activation loop in solution with inhibitors as a potential answer to the selectivity problem (8, 9). angstrom-level precision, and can resolve multiple structural states However, kinome-wide profiling of kinase inhibitors has revealed and quantify conformational shifts between states.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/85871 Please be advised that this information was generated on 2021-09-29 and may be subject to change. ISOFORMS IN MUSCLE AND BRAIN CELLS localization and function • ralph j.a. oude ophuis • 2011 9 789088 912344 > ISBN 978-90-8891234,-4 DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Voor het bijwonen van de openbare verdediging van het proefschrift van RALPH J.A. OUDE OPHUIS DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION op vrijdag 1 april 2011 om 13:00u precies in de Aula van de Radboud Universiteit Nijmegen aan de Comeniuslaan 2 te Nijmegen Na afloop van de verdediging is er een receptie ter plaatse PARANIMFEN Susan Mulders [email protected] Rinske van de Vorstenbosch r.vandevorstenbosch(§) ncmls.ru.nl DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION ISBN-13 978-90-8891234-4 ISBN-10 90-8891-234-3 Printed by Proefsohriftmaken.nl || Printyourthesis.com Published by Uitgeverij BOXPress, Oisterwijk DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 1 april 2011 om 13:00 uur precies door Raphaël Johannes Antonius Oude Ophuis geboren op 24 oktober 1978 te Sint-Oedenrode Promotor Prof.
    [Show full text]
  • Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions Khushwant S
    Bhullar et al. Molecular Cancer (2018) 17:48 https://doi.org/10.1186/s12943-018-0804-2 REVIEW Open Access Kinase-targeted cancer therapies: progress, challenges and future directions Khushwant S. Bhullar1, Naiara Orrego Lagarón2, Eileen M. McGowan3, Indu Parmar4, Amitabh Jha5, Basil P. Hubbard1 and H. P. Vasantha Rupasinghe6,7* Abstract The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein- coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies. Keywords: Kinases, Kinase inhibition, Small-molecule drugs, Cancer, Oncology Background Recent advances in our understanding of the fundamen- Kinases are enzymes that transfer a phosphate group to a tal molecular mechanisms underlying cancer cell signaling protein while phosphatases remove a phosphate group have elucidated a crucial role for kinases in the carcino- from protein.
    [Show full text]
  • Prevalence of Linear Configuration Among Chain Trivalents at Metaphase I in Pollen Mother Cells of Petunia Axillaris (LAM.) B
    _??_1991 by Cytologia, Tokyo Cytologia 56: 367 -371 , 1991 Prevalence of Linear Configuration among Chain Trivalents at Metaphase I in Pollen Mother Cells of Petunia axillaris (LAM.) B. S. P. P. China Pullaiah, P. S. R. L. Narasinga Rao and V. Padmaja Department of Botany, Andhra University, Waltair, India Accepted February 28, 1991 At somatic metaphase the kinetochore of each sister chromatid interacts with the spindle in such a way that the two subsequently disjoin one to each pole. At metaphase I of meiosis in disomics, a pair of chromatids is one half of a bivalent. Here, in their involvement with the spindle, the two kinetochores of a chromatid pair are not poised disjunctionally, and the centromere is thus said to be syntelic. For a 'double kinetochore' of each member of a meiotic bivalent, 'syntelic' aspect is thus a derived state. Failure of the 'double kinetochore' to attain to 'syntelic' state is rare for the members of a bivalent. On the other hand, the 'kinetochore pair' of a univalent at meiosis I may assume an amphitelic state at metaphase I even if the initial development was towards a syntelic state (Bauer et al. 1961, Sybenga 1975). When we consider chain trivalents, which indeed are the simplest of multivalents, syntelic state for all three kinetochore pairs is quite prevalent and is often seen in the alternate configuration where the mid-member is poised disjunctionally from both its neighbours. Much rarer is the variant, where the three syntelic centromeres disjoin in a 2-1 manner as in the case of ad jacent orientation.
    [Show full text]
  • Cell Cycle Genes 243831 at MAPK6
    Identificación de vulnerabilidades en tumores sólidos: ¿aportes hacia una medicina personalizada? Alberto Ocana Albacete University Hospital Salamanca May 19th, 2016 WHAT IS PERSONALIZED MEDICINE? Molecular alteration------------targeted agents---------companion diagnostic Drugs with companion diagnostic Ocana A et al, Oncotarget 2016 Meta-analyses companion vs non-companion diagnostics PFS OS Meta-analyses of toxicities • Methods to identify oncogenic and non-oncogenic vulnerabilities • How to evaluate novel agents against them Our personal experience Synthetic Lethality Interactions Ocana A and Pandiella A, Personalized therapies in the cancr omics era. Mol Cancer 2010 Summary Mutation and copy number analyses Phospho-kinase profiling Transcriptomic analyses Synthetic Lethality Interactions- Evaluation of new drugs “Academic iniciatives: Drug developer” software as a tool Mutation and copy number analyses No very useful if not linked with a functional evaluation in a specific genetic context A somatic cancer driver event may depend on the constellation of polymorphisms already present in an individual’s germline . (Germline variants single nucleotide polymorphisms, SNPs). But it can be useful for: Clonal evolution of tumors Heterogeneity of tumors Monitor response to treatments and identify mechanism of resistance Single cell sequencing Circulating tumor DNA As a part of a global study; pathway level alterations Example: Evaluation of mutations in ER using circulating DNA in patients treated with palbociclib + hormonotherapy Phospho-kinase
    [Show full text]