Aurora Kinases: Shining Lights on the Therapeutic Horizon?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aurora Kinase a in Gastrointestinal Cancers: Time to Target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4*
Katsha et al. Molecular Cancer (2015) 14:106 DOI 10.1186/s12943-015-0375-4 REVIEW Open Access Aurora kinase A in gastrointestinal cancers: time to target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4* Abstract Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings. Keywords: Aurora kinases, Therapy, AURKA inhibitors, MNL8237, Alisertib, Gastrointestinal, Cancer, Signaling pathways Introduction stage [9-11]. Furthermore, AURKA is critical for Mitotic kinases are the main proteins that coordinate ac- bipolar-spindle assembly where it interacts with Ran- curate mitotic processing [1]. -
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. -
RASSF1A Interacts with and Activates the Mitotic Kinase Aurora-A
Oncogene (2008) 27, 6175–6186 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE RASSF1A interacts with and activates the mitotic kinase Aurora-A L Liu1, C Guo1, R Dammann2, S Tommasi1 and GP Pfeifer1 1Division of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, USA and 2Institute of Genetics, University of Giessen, Giessen, Germany The RAS association domain family 1A (RASSF1A) gene tumorigenesis and carcinogen-induced tumorigenesis is located at chromosome 3p21.3 within a specific area of (Tommasi et al., 2005; van der Weyden et al., 2005), common heterozygous and homozygous deletions. RASS- supporting the notion that RASSF1A is a bona fide F1A frequently undergoes promoter methylation-asso- tumor suppressor. However, it is not fully understood ciated inactivation in human cancers. Rassf1aÀ/À mice how RASSF1A is involved in tumor suppression. are prone to both spontaneous and carcinogen-induced The biochemical function of the RASSF1A protein is tumorigenesis, supporting the notion that RASSF1A is a largely unknown. The homology of RASSF1A with the tumor suppressor. However, it is not fully understood how mammalian Ras effector novel Ras effector (NORE)1 RASSF1A is involved in tumor suppression pathways. suggests that the RASSF1A gene product may function Here we show that overexpression of RASSF1A inhibits in signal transduction pathways involving Ras-like centrosome separation. RASSF1A interacts with Aurora-A, proteins. However, recent data indicate that RASSF1A a mitotic kinase. Surprisingly, knockdown of RASS- itself binds to RAS only weakly and that binding to F1A by siRNA led to reduced activation of Aurora-A, RAS may require heterodimerization of RASSF1A and whereas overexpression of RASSF1A resulted in in- NORE1 (Ortiz-Vega et al., 2002). -
Targeting the Hippo Pathway in Prostate Cancer: What's New?
cancers Review Targeting the Hippo Pathway in Prostate Cancer: What’s New? Kelly Coffey Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] Simple Summary: Prostate cancer is the most commonly diagnosed cancer in men in the UK, accounting for the deaths of over 11,000 men per year. A major problem in this disease are tumours which no longer respond to available treatments. Understanding how this occurs will reveal new ways to treat these patients. In this review, the latest findings regarding a particular group of cellular factors which make up a signalling network called the Hippo pathway will be described. Accumulating evidence suggests that this network contributes to prostate cancer progression and resistance to current treatments. Identifying how this pathway can be targeted with drugs is a promising area of research to improve the treatment of prostate cancer. Abstract: Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ. -
Mtor REGULATES AURORA a VIA ENHANCING PROTEIN STABILITY
mTOR REGULATES AURORA A VIA ENHANCING PROTEIN STABILITY Li Fan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University December 2013 Accepted by the Graduate Faculty, of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Lawrence A. Quilliam, Ph.D., Chair Doctoral Committee Simon J. Atkinson, Ph.D. Mark G. Goebl, Ph.D. October 22, 2013 Maureen A. Harrington, Ph.D. Ronald C. Wek, Ph.D. ii © 2013 Li Fan iii DEDICATION I dedicate this thesis to my family: to my parents, Xiu Zhu Fan and Shu Qin Yang, who have been loving, supporting, and encouraging me from the beginning of my life; to my husband Fei Huang, who provided unconditional support and encouragement through these years; to my son, David Yan Huang, who has made my life highly enjoyable and meaningful. iv ACKNOWLEDGMENTS I sincerely thank my mentor Dr. Lawrence Quilliam for his guidance, motivation, support, and encouragement during my dissertation work. His passion for science and the scientific and organizational skills I have learned from Dr. Quilliam made it possible for me to achieve this accomplishment. Many thanks to Drs. Ron Wek, Mark Goebl, Maureen Harrington, and Simon Atkinson for serving on my committee and providing constructive suggestions and technical advice during my Ph.D. program. I have had a pleasurable experience working with all the people in our laboratory. Thanks Drs. Justin Babcock and Sirisha Asuri, and Mr. -
Chromosome Missegregation in Human Cells Arises Through Specific
Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors Sarah L. Thompson and Duane A. Compton1 Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and Cancer Mechanisms Program, Norris Cotton Cancer Center, Lebanon, NH 03766 Edited by John W. Sedat, University of California, San Francisco School of Medicine, San Francisco, CA, and approved September 15, 2011 (received for review June 17, 2011) Most solid tumors are aneuploid, and many missegregate chro- cur, particularly in early phases of mitosis, as a consequence mosomes at high rates in a phenomenon called chromosomal of the stochastic interactions between microtubules and kinet- instability (CIN). CIN reflects the erosion of mitotic fidelity, and it ochores (11). A prominent error is when a single kinetochore correlates with poor patient prognosis and drug resistance. The binds microtubules oriented toward both spindle poles. This most common mechanism causing CIN is the persistence of improper error is called merotely (12, 13). The persistence of merotely kinetochore–microtubule attachments called merotely. Chromo- undermines chromosome segregation because merotelic kinet- somes with merotelic kinetochores often manifest as lagging chro- ochores experience poleward force toward both spindle poles. As mosomes in anaphase, suggesting that lagging chromosomes fail a consequence, merotely often results in the appearance of lag- to segregate properly. However, it remains unknown whether the ging chromosomes in anaphase, and tumor cells with CIN have lagging chromosomes observed in anaphase segregate to the cor- elevated rates of lagging chromosomes and merotelic attach- rect or incorrect daughter cell. To address this question, we tracked ments (9). Moreover, it was shown that increasing the correction the segregation of a single human chromosome during cell division rate of merotely by stimulating the dynamics of k-MT attachment by using LacI-GFP to target an integrated LacO array. -
Covalent Aurora a Regulation by the Metabolic Integrator Coenzyme A
bioRxiv preprint doi: https://doi.org/10.1101/469585; this version posted November 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Covalent Aurora A regulation by the metabolic integrator coenzyme A Yugo Tsuchiya1#, Dominic P Byrne2#, Selena G Burgess3#, Jenny Bormann4, Jovana Bakovic1, Yueyan Huang1, Alexander Zhyvoloup1, Sew Peak-Chew5, Trang Tran6, Fiona Bellany6, Alethea Tabor6, AW Edith Chan7, Lalitha Guruprasad8, Oleg Garifulin9, Valeriy Filonenko9, Samantha Ferries10, Claire E Eyers10, John Carroll4^, Mark Skehel5, Richard Bayliss3*, Patrick A Eyers2* and Ivan Gout1,9* 1Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK 2Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK 3School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK 4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 5MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK 6Department of Chemistry, University College London, London WC1E 6BT, UK 7Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK 8School of Chemistry, University of Hyderabad, Hyderabad 500 046, India 9Department of Cell -
Quantitative Conformational Profiling of Kinase Inhibitors Reveals Origins of Selectivity for Aurora Kinase Activation States
Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states Eric W. Lakea, Joseph M. Murettab, Andrew R. Thompsonb, Damien M. Rasmussenb, Abir Majumdara, Erik B. Faberc, Emily F. Ruffa, David D. Thomasb, and Nicholas M. Levinsona,d,1 aDepartment of Pharmacology, University of Minnesota, Minneapolis, MN 55455; bDepartment of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455; cDepartment of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455; and dMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 Edited by Kevan M. Shokat, University of California, San Francisco, CA, and approved November 7, 2018 (received for review June 28, 2018) Protein kinases undergo large-scale structural changes that tightly lytically important Asp–Phe–Gly (DFG) motif, located on the regulate function and control recognition by small-molecule in- flexible activation loop of the kinase, is flipped relative to its hibitors. Methods for quantifying the conformational effects of orientation in the active state (referred to as “DFG-out,” in inhibitors and linking them to an understanding of selectivity contrast to the active “DFG-in” state). The observation that the patterns have long been elusive. We have developed an ultrafast inactive DFG-out states of kinases are more divergent than the time-resolved fluorescence methodology that tracks structural catalytically competent DFG-in state has led to a focus on type II movements of the kinase activation loop in solution with inhibitors as a potential answer to the selectivity problem (8, 9). angstrom-level precision, and can resolve multiple structural states However, kinome-wide profiling of kinase inhibitors has revealed and quantify conformational shifts between states. -
PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/85871 Please be advised that this information was generated on 2021-09-29 and may be subject to change. ISOFORMS IN MUSCLE AND BRAIN CELLS localization and function • ralph j.a. oude ophuis • 2011 9 789088 912344 > ISBN 978-90-8891234,-4 DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Voor het bijwonen van de openbare verdediging van het proefschrift van RALPH J.A. OUDE OPHUIS DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION op vrijdag 1 april 2011 om 13:00u precies in de Aula van de Radboud Universiteit Nijmegen aan de Comeniuslaan 2 te Nijmegen Na afloop van de verdediging is er een receptie ter plaatse PARANIMFEN Susan Mulders [email protected] Rinske van de Vorstenbosch r.vandevorstenbosch(§) ncmls.ru.nl DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION ISBN-13 978-90-8891234-4 ISBN-10 90-8891-234-3 Printed by Proefsohriftmaken.nl || Printyourthesis.com Published by Uitgeverij BOXPress, Oisterwijk DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 1 april 2011 om 13:00 uur precies door Raphaël Johannes Antonius Oude Ophuis geboren op 24 oktober 1978 te Sint-Oedenrode Promotor Prof. -
Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions Khushwant S
Bhullar et al. Molecular Cancer (2018) 17:48 https://doi.org/10.1186/s12943-018-0804-2 REVIEW Open Access Kinase-targeted cancer therapies: progress, challenges and future directions Khushwant S. Bhullar1, Naiara Orrego Lagarón2, Eileen M. McGowan3, Indu Parmar4, Amitabh Jha5, Basil P. Hubbard1 and H. P. Vasantha Rupasinghe6,7* Abstract The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein- coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies. Keywords: Kinases, Kinase inhibition, Small-molecule drugs, Cancer, Oncology Background Recent advances in our understanding of the fundamen- Kinases are enzymes that transfer a phosphate group to a tal molecular mechanisms underlying cancer cell signaling protein while phosphatases remove a phosphate group have elucidated a crucial role for kinases in the carcino- from protein. -
Prevalence of Linear Configuration Among Chain Trivalents at Metaphase I in Pollen Mother Cells of Petunia Axillaris (LAM.) B
_??_1991 by Cytologia, Tokyo Cytologia 56: 367 -371 , 1991 Prevalence of Linear Configuration among Chain Trivalents at Metaphase I in Pollen Mother Cells of Petunia axillaris (LAM.) B. S. P. P. China Pullaiah, P. S. R. L. Narasinga Rao and V. Padmaja Department of Botany, Andhra University, Waltair, India Accepted February 28, 1991 At somatic metaphase the kinetochore of each sister chromatid interacts with the spindle in such a way that the two subsequently disjoin one to each pole. At metaphase I of meiosis in disomics, a pair of chromatids is one half of a bivalent. Here, in their involvement with the spindle, the two kinetochores of a chromatid pair are not poised disjunctionally, and the centromere is thus said to be syntelic. For a 'double kinetochore' of each member of a meiotic bivalent, 'syntelic' aspect is thus a derived state. Failure of the 'double kinetochore' to attain to 'syntelic' state is rare for the members of a bivalent. On the other hand, the 'kinetochore pair' of a univalent at meiosis I may assume an amphitelic state at metaphase I even if the initial development was towards a syntelic state (Bauer et al. 1961, Sybenga 1975). When we consider chain trivalents, which indeed are the simplest of multivalents, syntelic state for all three kinetochore pairs is quite prevalent and is often seen in the alternate configuration where the mid-member is poised disjunctionally from both its neighbours. Much rarer is the variant, where the three syntelic centromeres disjoin in a 2-1 manner as in the case of ad jacent orientation. -
Cell Cycle Genes 243831 at MAPK6
Identificación de vulnerabilidades en tumores sólidos: ¿aportes hacia una medicina personalizada? Alberto Ocana Albacete University Hospital Salamanca May 19th, 2016 WHAT IS PERSONALIZED MEDICINE? Molecular alteration------------targeted agents---------companion diagnostic Drugs with companion diagnostic Ocana A et al, Oncotarget 2016 Meta-analyses companion vs non-companion diagnostics PFS OS Meta-analyses of toxicities • Methods to identify oncogenic and non-oncogenic vulnerabilities • How to evaluate novel agents against them Our personal experience Synthetic Lethality Interactions Ocana A and Pandiella A, Personalized therapies in the cancr omics era. Mol Cancer 2010 Summary Mutation and copy number analyses Phospho-kinase profiling Transcriptomic analyses Synthetic Lethality Interactions- Evaluation of new drugs “Academic iniciatives: Drug developer” software as a tool Mutation and copy number analyses No very useful if not linked with a functional evaluation in a specific genetic context A somatic cancer driver event may depend on the constellation of polymorphisms already present in an individual’s germline . (Germline variants single nucleotide polymorphisms, SNPs). But it can be useful for: Clonal evolution of tumors Heterogeneity of tumors Monitor response to treatments and identify mechanism of resistance Single cell sequencing Circulating tumor DNA As a part of a global study; pathway level alterations Example: Evaluation of mutations in ER using circulating DNA in patients treated with palbociclib + hormonotherapy Phospho-kinase