From the Late Cretaceous of North America

Total Page:16

File Type:pdf, Size:1020Kb

From the Late Cretaceous of North America A microraptorine (Dinosauria–Dromaeosauridae) from the Late Cretaceous of North America Nicholas R. Longricha,1 and Philip J. Currieb aDepartment of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4; and bDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved January 30, 2009 (received for review November 17, 2008) The fossil assemblages of the Late Cretaceous of North America are Europe, Asia, and Gondwana (17–28). This raises the question dominated by large-bodied dinosaur species. Associated skeletons of whether small-bodied, endothermic carnivores were truly rare of small dinosaurs are exceedingly rare, and small (<10 kg) car- in these assemblages, or whether our picture of these ecosystems nivorous theropods have not previously been reported from these is incomplete. beds. Here, we describe a small dromaeosaurid from the 75-million- Recently, study of museum collections resulted in the identi- year-old Dinosaur Park Formation of Alberta, Canada. Hesperony- fication of a specimen of a previously unknown dinosaur from chus elizabethae gen. et sp. nov. is represented by a pelvic girdle the Upper Cretaceous (upper Campanian) Dinosaur Park For- Ϸ from an animal weighing 1,900 g. Despite its size, the pubes and mation (29) of Alberta, Canada. The specimen was collected in ilia are coossified, indicating that the animal was somatically 1982 but lay unstudied for 25 years. Preparation of the fossil mature. This is the smallest carnivorous, nonavian dinosaur known revealed that it represents a new genus of the clade Dromaeo- from North America. Phylogenetic analysis of Hesperonychus re- sauridae, a group of birdlike, carnivorous theropods (30). veals that it is not closely related to previously described North This animal, Hesperonychus elizabethae, gen. et sp. nov., is American dromaeosaurids. Instead, Hesperonychus is a member of almost an order of magnitude smaller than any other carnivorous the dromaeosaurid clade Microraptorinae, a group containing the dinosaur known from the Dinosaur Park Formation (see Dino- 4-winged Microraptor and the feathered Sinornithosaurus, both saur Mass Data and Equations in SI Appendix) or any North from the Lower Cretaceous Jehol Group of China. Hesperonychus GEOLOGY is the youngest known member of this lineage, extending the American Cretaceous assemblage. This find demonstrates that in temporal range of the clade by 45 million years, and it is the first the Late Cretaceous of North America, dromaeosaurids ex- microraptorine known from North America, providing further ploited the small-carnivore niche. evidence for an affinity between the dinosaur faunas of North Surprisingly, Hesperonychus does not appear to be related to America and Asia. Study of fossil collections from the Dinosaur Park previously known North American dromaeosaurids, such as and Oldman formations of Alberta has revealed numerous isolated Dromaeosaurus albertensis (31) and Saurornitholestes langstoni bones of small, basal dromaeosaurids, which are tentatively re- (32). Instead, it shares features with the Microraptorinae, a clade ferred to Hesperonychus. These fossils suggest that small of small, basal dromaeosaurids that includes the feathered ECOLOGY dromaeosaurids were a significant component of the carnivore Sinornithosaurus and the bizarre ‘‘4-winged’’ Microraptor, both community in this Late Cretaceous biota. from the Lower Cretaceous Jehol Group of China (20–22, 24). Campanian ͉ Dinosaur Park Formation ͉ microraptorinae ͉ theropoda Systematic Paleontology Systematics are as follows: Theropoda Marsh, 1881; Coeluro- he vast majority of known nonavian dinosaurs are medium- sauria von Huene, 1914; Maniraptora Gauthier, 1986; Dromaeo- Tand large-bodied forms, ranging in size from tens to thou- sauridae Matthew and Brown, 1922; Microraptorinae Senter et sands of kilograms (1). This pattern is especially evident in the al., 2004; Hesperonychus elizabethae gen. et sp. nov. Late Cretaceous of North America (2–8). Here, large-bodied (Ͼ1,000 kg) dinosaurs dominate fossil assemblages in terms of Holotype number of skeletons (2, 3, 7) and number of species (4–6, 8). UALVP (University of Alberta Laboratory for Vertebrate Small-bodied (Ͻ10 kg) carnivorous dinosaurs have not previ- Palaeontology, Edmonton) 48778, a partial pelvic girdle com- ously been described from these assemblages. prising the pubes and ilia (Fig. 1). Until now, the smallest carnivorous dinosaur known from the Late Cretaceous of North America was the dromaeosaurid Referred Material Saurornitholestes langstoni, which weighed Ϸ10 kg [see Dinosaur A number of isolated pedal phalanges are tentatively referred to Mass Data and Equations in supporting information (SI) Appen- Hesperonychus (see Specimen Data in SI Appendix and Fig. 2). dix]. Other animals are unlikely to have filled the small-carnivore Phalanx II-1 is represented by TMP (Royal Tyrrell Museum of niche. The alvarezsaurid theropod Albertonykus (9, 10) appears Palaeontology, Drumheller, AB, Canada) 1989.116.65, TMP to have been a specialized insectivore (10) rather than a carni- 1966.19.22, and UALVP 50687. Phalanx II-2 is represented by vore in the strict sense, and the stagodont marsupials were highly TMP 1992.36.61 and TMP 1983.67.7. Phalanx II-3 is represented specialized durophages (11, 12) that may have fed on aquatic by TMP 1979.10.6, TMP 1980.16.1880, TMP 1990.107.15, TMP invertebrates rather than terrestrial prey. 1995.092.0009, TMP 2000.12.100, and UALVP 50686. The apparent absence of small, endothermic (or, in the case of dinosaurs, presumably endothermic) carnivores in these Late Cretaceous ecosystems is remarkable: In modern, mammal- Author contributions: N.R.L. designed research; N.R.L. and P.J.C. performed research; N.R.L. dominated terrestrial communities, small-bodied animals out- analyzed data; and N.R.L. and P.J.C. wrote the paper. number large-bodied animals, both in terms of the number of The authors declare no conflict of interest. individuals in a given area (13, 14) and number of species (15, This article is a PNAS Direct Submission. 16). That dinosaurs might have left the small-carnivore niche 1To whom correspondence should be addressed. E-mail: [email protected]. vacant in North America is still more perplexing when one This article contains supporting information online at www.pnas.org/cgi/content/full/ considers that many small carnivorous dinosaurs are known from 0811664106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0811664106 PNAS Early Edition ͉ 1of6 Downloaded by guest on October 2, 2021 Fig. 1. Holotype pelvic girdle (UALVP 48778) of Hesperonychus elizabethae from the late Campanian Dinosaur Park Formation of Alberta, Canada. (A) Ventral view. (B) Anterior view. (C) Right lateral view. (D) Posterior view. (E) Dorsal view. ace, acetabulum; apr, pubic apron; fen, fenestra; il, ilium; ldp, lateral depression; lpr, lateral process; msb, medial shelf of brevis fossa; pat, pathology; pbt, pubic boot; pub, pubis. Etymology medially and may have contacted each other dorsally along the The name Hesperonychus derives from hesperus (Latin, west) and midline. Unlike the situation in Velociraptor, in which the ilia onychos (Greek, claw). The specific epithet elizabethae honors diverge posteriorly and the dorsal margin is laterally everted (30, the late Dr. Elizabeth Nicholls, who discovered the holotype. 33, 34), the posterior alae of the ilia would have been approxi- mately parallel, and the postacetabular blade projects vertically. Horizon and Locality As in basal paravians (23, 35–37), the posterior wing of the ilium The holotype was collected from exposures of the Dinosaur Park is tapered and curved ventrally in lateral view. Along the dorsal Formation located on the south side of the Red Deer River, Ϸ20 edge of the posterior ala, there is a distinct tubercle, a common km east of Dinosaur Provincial Park, Alberta. The Dinosaur maniraptoran feature (36). The brevis shelf projects ventrolat- Park Formation was deposited during the middle of the late erally away from the posterior blade of the ilium. Medially, the Campanian, between 76.5 and 74.8 Ma (29). Referred material medial shelf of the brevis fossa is split into separate anterior and was collected from Dinosaur Provincial Park and surrounding posterior processes, a condition unique to Hesperonychus. The badlands and other locations in southern Alberta, including acetabulum is similar to those of other dromaeosaurids in that Devil’s Coulee, Manyberries, Onefour, Irvine, and Sandy Point it lacks a prominent supracetabular crest (30, 36). However, (Specimen Data in SI Appendix); all are within 200 km of the type anteriorly, the contribution of the ilium to the acetabulum is locality. All specimens for which precise stratigraphic data are broad, and the anterior rim projects strongly laterally, as it does available come from a narrow chronostratigraphic interval that in Unenlagia (36). The medial opening of the acetabulum is encompasses the Dinosaur Park Formation and coeval beds of partially closed, as it is in other Dromaeosauridae (36). The the uppermost Oldman Formation (Specimen Data in SI Appen- acetabulum opens dorsolaterally rather than laterally, as is the dix). This interval represents no more than 1.7 million years of case in Velociraptor (38), suggesting the ability to partially abduct time (29). the hindlimbs. This morphology is of interest in
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • Anchiornis and Scansoriopterygidae
    SpringerBriefs in Earth System Sciences SpringerBriefs South America and the Southern Hemisphere Series Editors Gerrit Lohmann Lawrence A. Mysak Justus Notholt Jorge Rabassa Vikram Unnithan For further volumes: http://www.springer.com/series/10032 Federico L. Agnolín · Fernando E. Novas Avian Ancestors A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae 1 3 Federico L. Agnolín “Félix de Azara”, Departamento de Ciencias Naturales Fundación de Historia Natural, CEBBAD, Universidad Maimónides Buenos Aires Argentina Fernando E. Novas CONICET, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires Argentina ISSN 2191-589X ISSN 2191-5903 (electronic) ISBN 978-94-007-5636-6 ISBN 978-94-007-5637-3 (eBook) DOI 10.1007/978-94-007-5637-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012953463 © The Author(s) 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • Early Cretaceous (Albian) Decapods from the Glen Rose and Walnut Formations of Texas, USA
    Bulletin of the Mizunami Fossil Museum, no. 42 (2016), p. 1–22, 11 fi gs., 3 tables. © 2016, Mizunami Fossil Museum Early Cretaceous (Albian) decapods from the Glen Rose and Walnut formations of Texas, USA Carrie E. Schweitzer*, Rodney M. Feldmann**, William L. Rader***, and Ovidiu Fran㶥escu**** *Department of Geology, Kent State University at Stark, 6000 Frank Ave. NW, North Canton, OH 44720 USA <[email protected]> **Department of Geology, Kent State University, Kent, OH 44242 USA ***8210 Bent Tree Road, #219, Austin, TX 78759 USA ****Division of Physical and Computational Sciences, University of Pittsburgh Bradford, Bradford, PA 16701 USA Abstract Early Cretaceous (Albian) decapod crustaceans from the Glen Rose Limestone and the Walnut Formation include the new taxa Palaeodromites xestos new species, Rosadromites texensis new genus, new species, Karyosia apicava new genus new species, Aetocarcinus new genus, Aetocarcinus muricatus new species, and the new combinations Aetocarcinus roddai (Bishop, 1983), Necrocarcinus pawpawensis (Rathbun, 1935) and Necrocarcinus hodgesi (Bishop, 1983). These two formations have yielded a much less diverse decapod fauna than the nearly coeval and proximally deposited Pawpaw Formation. Paleoenvironment is suggested as a controlling factor in the decapod diversity of these units. Key words: Brachyura, Nephropidae, Dromiacea, Raninoida, Etyioidea, North America Introduction deposited in the shallow waters of a broad carbonate platform. Deposition occurred on the southeastern flank of Late Early Cretaceous decapod faunas from the Gulf the Llano Uplift and, on the seaward margin to the Coastal Plain of North America have been well reported northwest, behind the Stuart City Reef Trend. Coral and and described since the early part of the twentieth century rudist reefs, algal beds, extensive ripple marks, evaporites, (Rathbun, 1935; Stenzel, 1945).
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow.
    [Show full text]
  • Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes
    GENERAL I ARTICLE Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes P V Sukumaran The bolide impact theory for mass extinctions at the Cretaceous-tertiary (K-T) boundary was a revolutionary concept. This theory was contested by short duration global volcanism as a possible alternative cause for the K-T extinction. Though there is a converging evidence for an extra-terrestrial impact coinciding with the P V Sukumaran took his terminal Cretaceous, the causative link between the M Tech degree in impact and the K-T mass extinction is debatable. Thus, Applied Geology from the while the impact theory is re-emerging, available evidence University of Saugar and has been with the is still insufficient to rule out either of the two hypotheses. Geological Survey of India since 1974. His interests Introduction include geochemistry, petrology and palae­ oceanography. He is It is now widely believed that life on earth began very early in presently posted to the its geological history, probably about 4000 My (million years) Marine Wing of the ago (Mojzsis and others, 1996). Since then it underwent Department and has participated in many several evolutionary branchings to the complex diversity as scientific cruises both as we see today. Nevertheless, it was not a smooth voyage for life Chief Scientist and as a all along, the evolution was punctuated by geologically participating scientist. ins tan taneous events of mass mortality. New species emerged at the expense of their predecessors following each extinction event and life went on evolving ever more vibrantly. In the geologic record of rock strata, such mass extinction events are identifiable based on sudden absence and reduction in diversity of fossil assemblage across stratigraphic boundaries.
    [Show full text]
  • The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M
    The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M. Gilbert Department of Geological Sciences, University of Saskatchewan; [email protected] Summary The Upper Cretaceous Dinosaur Park Formation (DPF) is a south- and eastward-thinning fluvial to marginal marine clastic-wedge in the Western Canadian Sedimentary Basin. The DPF is overlain by the Bearpaw Formation (BF), a fully marine clastic succession representing the final major transgression of the epicontinental Western Interior Seaway (WIS) across western North America. In southwestern Saskatchewan, the DPF is comprised of marginal marine coal, carbonaceous shale, and heterolithic siltstone and sandstone grading vertically into marine sandstone and shale of the Bearpaw Formation. Due to Saskatchewan’s proximity to the paleocoastline, 5th order transgressive cycles resulted in the deposition of multiple coal seams (Lethbridge Coal Zone; LCZ) in the upper two-thirds of the DPF in the study area. The estimated total volume of coal is 48109 m3, with a gas potential of 46109 m3 (Frank, 2005). The focus of this study is to characterize the facies and facies associations of the DPF, the newly erected Manâtakâw Member, and the lower BF in the Cypress Hills region of southwestern Saskatchewan utilizing core, outcrop, and geophysical well log data. This study provides a comprehensive sequence stratigraphic overview of the DPF-BF transition in Saskatchewan and the potential for coalbed methane exploration. Introduction The Dinosaur Park and Bearpaw Formations in Alberta, and its equivalents in Montana, have been the focus of several sedimentologic and stratigraphic studies due to exceptional outcrop exposure and extensive subsurface data (e.g., McLean, 1971; Wood, 1985, 1989; Eberth and Hamblin, 1993; Tsujita, 1995; Catuneanu et al., 1997; Hamblin, 1997; Rogers et al., 2016).
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]