Course Name : BSC Subject Name

Total Page:16

File Type:pdf, Size:1020Kb

Course Name : BSC Subject Name 1 Course Name : BSC Subject Name: Plant Biotechnology Prepared by Assistant Professor’s Team of Microtek College of Management & Technology Under Guidance of Dr. Pankaj Rajhans An Alumni of IIT-Delhi President & Executive Director Microtek College of Management & Technology Jaunpur & Varanasi (U.P) 2 Unit I Plant genome organization (Page 3-8) Structure of representative plant genes Gene families in plants Organisation of chloroplast genome Nuclear encoded and chloroplast encoded genes for chloroplast proteins Targeting of proteins to chloroplast Organisation of mitochondrial genome - encoded genes for mitochondrial proteins RNA editing for plant mitochondria Cytoplasmic male sterility Seed storage proteins Maize transposable elements, their organisation and function Transposabie elements in transgenic plants Regulation of gene expression in plant development -Plant hormones and phytochrome Unit II Symbiotic nitrogen fixation in legumes by Rhizobia Nitrogen fixation in Cyanophyta the biochemistry molecular biology and gene rearrangement Agrobacterium and crown gall tumors Mechanism of TDNA transfer to plants Ti plasmid vectors and its utility Classification and molecular biology of plant viruses Molecular biology of -plant stress response Transgenic plants and applications vaccine and other biological developments Unit III Genetic engineering in plants Selectable' markers Reporter genes and promoter used in plants by physical means Genetic engineering of plants for construction of genome libraries and CDNA libraries Molecular breeding 3 PLANT BIOTECHNOLOGY Plant Genome - Genetically, a plant genome is the most complex one found in living systems. It comprises three interacting genome. Aside from the nuclear genome, complete genetic systems are located in the plastids and the mitochondria. These organelles are semiautonomous bodies; they have their own organizational and functional properties but do not synthesize all their own proteins. The nuclear genome plays an important role in organelle biogenesis. Techniques in molecular cloning and deoxyribonucleic acid (DNA) sequencing have provided the tools for studying the structure of genes at the nucleotide level. Hence our knowledge of the structure, organization and expression of a plant genome has come largely through, the use of recombinant DNA techniques. This technology allows isolation and characterization of specific pieces of DNA by cloning the DNA sequences into bacterial cells in which they can be replicated and large quantities obtained for analysis. In addition to supplying much basic information concerning gene structure and expression, recombinant DNA technology enables specific manipulation of genetic material and the transference of such material between different organisms. These types of genetic manipulations may ultimately give us the opportunity to engineer agricultural crops and industrially important plants in order to, tailor them more closely to fulfill the needs of human beings. Nuclear Genome - A genome is the complete set of chromosomes found in each nucleus of a given species which contains the entire genetic material. The nuclear genome is the largest in the plant cell, both in terms of picograms of DNA and in number of genes encoded (complexity). Eukaryotic nuclear genomes can be distinguished from organelle and prokaryotic genomes by size and complexity. A typical higher plant genome, for example, contains about 5 x 109 base pairs of DNA per haploid set of chromosomes. This is about 30,000 times as much DNA as in a single chloroplast genome and some 10,000 times as much as in a moderately sized plant mitochondrial genome. It is also 1000 times more than that of bacterial DNA present in Escherichia coli. The typical plant genome with 5 x 109 base pairs of DNA would be about three metres long if the entire DNA were to be laid out in a straight line. Chromosomes are composed of two types of large organic molecules (macromolecules) called proteins and nucleic acids. Nucleic acids are of two types: deoxyribonucleic acids. (DNA) and ribonucleic acids (RNA).For many years scientists disputed which of these three macromolecules (proteins, RNA and DNA) carries genetic information. 4 During the 1940s and early 1950s several elegant experiments were carried out which clearly established that genetic information resides in the nucleic acids and not in the proteins. More specifically, these experiments showed that genetic information resides in DNA. (In a few simple viruses, however, RNA carries the genetic information; these particular viruses contain no DNA.) Nuclear DNA is packaged into chromosomes along with histones and nonhistone proteins, all of which play important roles in gene expression. These various components are held together to form chromatin by both hydrophobic and electrostatic forces. While the DNA encodes the genetic information, the proteins are involved in controlling packaging of DNA and in regulating its availability for transcription. Although the structure of eukaryotic chromatin has been fairly well characterized, the roles of various individual proteins in chromatin structure and gene regulation have yet to be elucidated. Size of Nuclear Genome of Various Plant Species – Species pg DNA per Haploid Genome Arabidopsis thaliana 0.50 Vigna radiata 0.53 Nicotiana tabaccum 2.00 Phaseolus coccineus 3.50 Triticum aestivum 5.10 Secale cereale 8.40 Vicia faba 26.00 Allium cepa 33.50 Viscum album 107.00 Repeated Sequences of Regulating Gene Expression - In a strict sense, some of the control sequences just described is really repeated sequences. Short elements, such as the TATA or CAAT boxes, appear in many promoters and hence are repeated, but because they are so short are not recognized in hybridization experiments. Enhancers may sometimes contain several repeats of a somewhat longer sequence (such as the 72-nucleotide repeats of the SV40 enhancer), By themselves, however, these do not reach sufficiently high copy numbers to be detected in classical reassociation experiments and no extensive sequence homology exists among enhancers as a class, although some short homologies have been found. Therefore, none of the gene regulatory elements discussed thus far can be considered "classical" repeated sequences. 5 Evidence for the involvement of "classical" repeated sequences in gene regulation is far more circumstantial and is based on the occurrence of repeat sequence transcripts in the RNA population. Although most mRNAs are transcripts of single copy genes, repeat transcripts can often be found when Cloned repeat sequence probes are used to increase sensitivity. This is especially true in nuclear RNAs, wherein the RNA contains transcripts of many interspersed repeat sequences. When different stages of develop ment are compared, it is usually found that the repeat sequences which are most abundant in RNA differ from stage to stage. Of course, simply because repetitive sequences are transcribed, or because their transcription changes during development, does not prove that they are involved in gene regulation. It seems likely that most transcribed repeats are simply sequence elements that have found their way into transcription units by evolutionary accidents or rearrangement or transposition. On the other hand, if must be admitted that a small class of functionally important repeat sequences might exist against a large background of evolutionary noise. Several lines of evidence from animal systems suggest that this may be true. The transcriptional elements are parts of a gene or its flanking sequences and affect only the gene to which they are directly linked. In genetic terms they function cis, regulating genes on the same chromosome. Clearly, there must be other elements involved in gene regulation and, as a matter of fact, there is now good experimental evidence that in some cases certain protein factors must be bound to specific sites in a gene or its flanking sequences in order to initiate transcription. An example is the transcription factor which binds to the heat shock promoter in Drosophila. Genes encoding this factor would be examples of trans-acting control elements. As their name implies, such elements are capable of affecting genes other than those located on the same chromosome. Transacting regulatory genes are well known from genetic studies but our understanding of the molecular nature of such elements, and the factors which presumably mediate their effects, is still quite limited. Certainly, their importance can hardly be denied. Gene families:- This is a list of gene families or gene complexes, that is sets of genes which occur across a number of different species which often serve similar biological functions. These gene families typically encode functionally related proteins, and sometimes the term gene families is a shorthand for the sets of proteins that the genes encode. They may or may not be physically adjacent on the same chromosome. Example of these:- CalcinPEst *calcineurin-like phosphoesterase 6 Calmod Calmodulin CytP450 *cytochrome P450 Enod16 Enod16 Protein family:-A protein family is a group of evolutionarily related proteins, and is often nearly synonymous with gene family. The term protein family should not be confused with family as it is used in taxonomy. Proteins in a family descend from a common ancestor (see homology) and typically have similar three-dimensional structures, functions, and significant sequence similarity. While it is difficult to evaluate the significance of functional or structural
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub
    US 2008O148432A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub. Date: Jun. 19, 2008 (54) TRANSGENIC PLANTS WITH ENHANCED Publication Classification AGRONOMIC TRAITS (51) Int. Cl. AOIH 5/00 (2006.01) CI2N 5/82 (2006.01) (76) Inventor: Mark Scott Abad, Webster Grove, CI2N 5/04 (2006.01) MO (US) (52) U.S. Cl. ......... 800/279: 800/281; 435/419,435/468; 8OO/320.1 Correspondence Address: (57)57 ABSTRACT MONSANTO COMPANY This invention provides transgenic plant cells with recombi 800 N. LINDBERGHBLVD, ATTENTION: GAIL nant DNA for expression of proteins that are useful for P. WUELLNER, IP PARALEGAL (E2NA) imparting enhanced agronomic trait(s) to transgenic crop ST. LOUIS MO 631.67 9 plants. This invention also provides transgenic plants and 9 progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use effi (21) Appl. No.: 11/374,300 ciency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing trans (22) Filed: Dec. 21, 2005 genic seed and plants with enhanced traits. Patent Application Publication Jun. 19, 2008 Sheet 1 of 3 US 2008/0148432 A1 Figure 1. 41905 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 127 O2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    [Show full text]
  • Improvement of Lentil (Lens Culinaris Medik.) Through Genetic Transformation
    Improvement of Lentil ( Lens culinaris Medik.) through Genetic Transformation Von der Naturwissenschaftlichen Fakultät Der Gottfried Wilhelm Leibniz Universität Hannover Zur Erlangung des Grades einer DOKTORIN DER NATURWISSENSCHAFTEN Dr. rer. nat. genehmigte Dissertation Von M.Sc. Rehana Hashem Geboren am 23.10.1971 in Dhaka, Bangladesh 2007 Referent: Prof. Dr. Hans - Jörg Jacobsen Korreferent: Prof. Dr. Edgar Maiß Prüfungsvorsitz: Prof. Dr. Bernhard Huchzemeyer Tag der Promotion: 23 February 2007 Dedicated to my beloved parents And My respected teachers ABSTRACT Work title: Improvement of Lentil ( Lens culinaris Medik.) through genetic transformation. Hashem, Rehana The future agriculture will depend more on legume crops because they all have high energy and high protein production for human and animal nutrition as well as amino acid profiles complementary to those of other crops, mainly cereals. The unique symbiotic ability of legumes is to use atmospheric nitrogen for plant growth makes them preferable crops for sustainable agriculture. Lentil is the 2nd most important grain legume that gained worldwide economic importance as a source of protein (25.5 – 28.31 %). In addition, it is also suitable as a rotation crop to replenish soil nitrogen levels. It is a crop of cooler temperature and is widely grown in the temperate zones of the world. The production of lentil is usually considerably below the established yield potential as this crop is very sensitive to particular biotic and abiotic stresses. The most serious biotic attribute constrain in lentils are the foliar diseases such as Ascochyta blight, rust, Stemphylium blight and Botrytis grey mold. Yield stability and productivity and the value of lentil could be greatly increased by the introduction of stably inherited traits such as pest and disease resistance, herbicide resistance or improved protein quality.
    [Show full text]
  • Wo 2009/134339 A2
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 5 November 2009 (05.11.2009) WO 2009/134339 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/82 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, PCT/US2009/002547 EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 24 April 2009 (24.04.2009) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, (26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/125,908 29 April 2008 (29.04.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): MON¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, SANTO TECHNOLOGY, LLC [US/US]; 800 North ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Lindbergh Boulevard, St.
    [Show full text]
  • Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops
    Journal of Biomedicine and Biotechnology • 2005:4 (2005) 326–352 • DOI: 10.1155/JBB.2005.326 RESEARCH ARTICLE Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops Gijs A. Kleter, Ad A. C. M. Peijnenburg, and Henk J. M. Aarts RIKILT, Institute of Food Safety, Wageningen University and Research Center, PO Box 230, 6700AE Wageningen, The Netherlands Received 18 October 2004; revised 30 May 2005; accepted 1 June 2005 The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically mod- ified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics of microbial transgenes other than antibiotic-resistance genes in market-approved genetically modified crops are reviewed. These characteristics include the microbial source, natural function, function in genetically modified crops, natural prevalence, geographical distribution, similarity to other microbial genes, known horizontal transfer activity, selective conditions and environments for horizontally transferred genes, and potential contribution to pathogenicity and virulence in hu- mans and animals. The assessment of this set of data for each of the microbial genes reviewed does not give rise to health concerns. We recommend including the above-mentioned items into the premarket safety assessment of genetically modified crops carrying transgenes other than those reviewed in the present study. INTRODUCTION the Organisation for Economic Cooperation and Devel- The cultivation of genetically modified (GM) crops opment (OECD) and International Life Sciences Institute has rapidly increased since their large-scale commercial (ILSI) have initiated this harmonisation.
    [Show full text]
  • Sachverzeichnis a – Viren (AVV) 434Ff
    629 Sachverzeichnis a – Viren (AVV) 434ff. Aktiengesellschaft (AG) 554ff. a-Faktor 197 Adenosin-Desaminase (ADA)-Mangel 429 Aktionspotenzial 33f., 89 AAV (adeno-assoziierte Viren) 434ff. Adenosin-Phosphorthioate 448 Aktivität Aberration 207 S-Adenosylmethionin (SAM) 146 – Katalysator 485 – chromatische 207 Adenovirus 53, 171f., 433ff. – transkriptionelle 262 – sphärische 207 – AD5-Virus 438 Akzeptor-Farbstoff 278f. ABC-Transporter 33, 51 – Expressionssystem 171 Akzeptor-Molekül Abfallbeseitigung von Industriechemikalien – Gentherapie 513 – fluoreszierendes 214 521 – Vektoren 436ff. Alanin 15f., 293, 318, 335ff. Abl-Onkogen 353 – Wildtyp-Adenoviren 171 Aldose 8f. Abrin A-Kette 370 Adenovirusgenom 171f. Aldosteron 13f., 35 Abschlussgewebe 55 Adenylat-Cyclase 34 Alemtuzumab 370, 416 Abschnitt ADEPT (antibody-directed enzyme pro-drug Alexa Fluor-Farbstoffe 273 – regulatorischer 73ff., 155, 255ff., 300 therapy) 413 Alge 43ff., 56, 94ff., 241, 499 Absorptionsspektrum Adhäsionsprotein 369, 456 Algorithmus – Farbstoff 278 Adipocyt (Fettzelle) 55 – heuristischer 294ff. Abstoßung 448 ADME-T (absorption, distribution, metabolism, Alignment 293ff. – Transplantat 382 excretion, and toxicity) 363 – Algorithmus 301 Abwasserreinigung ADR, s. adverse drug reaction – BLAST (basic local alignment search – anaerobe 507 ADP-Glucose 22 tool) 294 Acetolactat-Synthase-Gen 471 Adrenalin 34 – FASTA 294 Aceton 481, 497, 507 Adsorptionschromatographie 135 – global 294 – Proteinfällung 109 adulte Stammzelle 57 – lokal 294 Acetosyringon 464 Adventivsprossbildung 475
    [Show full text]
  • Title Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus Rhodochrous J1( Dissertation 全
    Organization and Regulation of Genes Involved in Nitrile Title Metabolism in Rhodococcus rhodochrous J1( Dissertation_全 文 ) Author(s) Komeda, Hidenobu Citation 京都大学 Issue Date 1996-05-23 URL https://doi.org/10.11501/3112279 Right Type Thesis or Dissertation Textversion author Kyoto University Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus rhodochrous 1 l Hidenobu Komeda 1996 CONTENTS I~ J RO DUCTIO'\ CII APTER I Anal)sis of H igh Molecular-:\-1as ... "-ilrile H)dratase (H-'-lHase) Gen e Cluster Scctton I Re~ulatol) genes for the exprc,ston ol catal~tically active 11-!\Hase SectiOn 2 lno;crtion 'cqucnce IS/ /64 in the H-'\Ha... e gene cluster 15 CHAPTER II Analysis of Low Molecular-Mass Mtrile H) dratase (L-NHase) Gene C lust er Secuon I CX·currenc~ of amidase<> in Rhodococc u.\ rhodochrow J I ..,,... _ Sc<.:lion 2 Amtdase coupled with L-N H a~e: Sequenctng and cxprc,ston of the gene and purification and charactcntAtion or the gene product 26 Section 1 Rcgulatol) genes required for the amtdc dependent induction of L-1\iHasc Section4 Cobalt tram.porter linked 10 L NH a:.e 60 CIIAPTER Ill Genetic Ana l)sis of Nitrilase Secuon I Sequencing and o'erexpression of the nitrilasc gene (mt\) and identification of an essential cysteine residue 73 SectiOn 2 Transcripllonal regulation of meA CON CLUSION 97 RFI< ERENCES 101 ACKNOWLF.I)G EME NTS 107 PUBLIC ATIONS 10~ 1!\TRODUCTIO" ABBRE\'IATIOt'l.~ bp Base pair(s) N1tnlc compounds containing a cyano function.al group such as cyanoglycosidcs.
    [Show full text]
  • Genetic Engineering – Sbb2102
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY UNIT – I – GENETIC ENGINEERING – SBB2102 1 rDNA TECHNOLOGY AND TOOLS INVOLVED IN GENETIC MANIPULATIONS 1. Recombinant DNA Technology: Through the years, scientists have studied the life and how it changes and adapts to the changes in the surroundings. One of their studies to cope up with the changes is through genetic modification. This process has been done indirectly to plants and animals to control their characteristics. Genetic modification is the process of changing the genetic makeup of an organism to express new traits. Modern biotechnology has made it much easier and faster in targeting specific genes to alter through genetic engineering. One of the most known technologies used in genetic engineering is Recombinant DNA Technology. DNA exists in the cells of all living things. These long chains of amino acids serve as the genetic blueprints for living organisms. DNA controls how they form before birth and which traits they pass on to the next generation. Recombinant DNA exists in a laboratory by combining genetic material from multiple sources. Recombinant DNA technology can create new kinds of living organisms or alter the genetic code of existing organisms. As with most technology, there are great benefits and notable downsides to the use of recombinant DNA technology. 1.1.Pros of Recombinant DNA Technology Recombinant DNA technology, sometimes referred to as "genetic engineering," can benefit people in several ways. For example, scientists made artificial human insulin with the help of recombinant DNA technology. Diabetic people cannot produce their own insulin, which they need in order to process sugar.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • ERMA New Zealand Evaluation and Review Report
    ERMA New Zealand Evaluation and Review Report Application for approval to field test in containment any genetically modified organism Application code: GMF06002 To field test over 10 consecutive years, the vegetable allium species onion, garlic and leek with genetically modified agronomic and quality traits in order to assess their performance in the field and investigate the environmental impacts of these plants Table of contents 1 Introduction ..................................................................................................... 7 2 Information Review ...................................................................................... 11 3 Risk management context ............................................................................. 13 4 Organism identification, description and characterisation............................ 17 5 Containment of the organism ........................................................................ 46 6 Assessment of the ability of the organism to establish a self-sustaining population ..................................................................................................... 80 7 Identification of potentially significant adverse effects and beneficial effects (risks, costs and benefits) .................................................................. 83 8 Assessment of potentially significant adverse and beneficial effects ......... 117 9 Evaluation of additional matters ................................................................. 127 10 Monitoring of effects .................................................................................
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • The Impact of Altered Herbicide Residues in Transgenic Herbicideresistant Crops on Standard Setting for Herbicide Residues
    Review Received: 12 December 2010 Accepted: 4 January 2011 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.2128 The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues Gijs A Kleter,a∗ John B Unsworthb and Caroline A Harrisc Abstract The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide residues within these crops. In this article, the four main categories of herbicide resistance, including resistance to acetolactate-synthase inhibitors, bromoxynil, glufosinate and glyphosate, are reviewed. The topics considered are the molecular mechanism underlying the herbicide resistance, the nature and levels of the residues formed and their impact on the residue definition and maximum residue limits (MRLs) defined by the Codex Alimentarius Commission and national authorities. No general conclusions can be drawn concerning the nature and level of residues, which has to be done on a case-by-case basis. International residue definitions and MRLs are still lacking for some herbicide–crop combinations, and harmonisation is therefore recommended. c 2011 Society of Chemical Industry Keywords: herbicides; transgenic crops; genetic modification; herbicide resistance; pesticide residues; maximum residue limits; regulatory affairs; international harmonisation 1INTRODUCTION • allowing for more flexible timing of applications with the target Since genetically modified (GM) crops were introduced herbicide. commercially on a large scale in the mid-1990s, the area covered In sum, herbicide resistance provides more flexibility in weed with these crops worldwide, as well as the number of countries management.
    [Show full text]