Improvement of Lentil (Lens Culinaris Medik.) Through Genetic Transformation

Total Page:16

File Type:pdf, Size:1020Kb

Improvement of Lentil (Lens Culinaris Medik.) Through Genetic Transformation Improvement of Lentil ( Lens culinaris Medik.) through Genetic Transformation Von der Naturwissenschaftlichen Fakultät Der Gottfried Wilhelm Leibniz Universität Hannover Zur Erlangung des Grades einer DOKTORIN DER NATURWISSENSCHAFTEN Dr. rer. nat. genehmigte Dissertation Von M.Sc. Rehana Hashem Geboren am 23.10.1971 in Dhaka, Bangladesh 2007 Referent: Prof. Dr. Hans - Jörg Jacobsen Korreferent: Prof. Dr. Edgar Maiß Prüfungsvorsitz: Prof. Dr. Bernhard Huchzemeyer Tag der Promotion: 23 February 2007 Dedicated to my beloved parents And My respected teachers ABSTRACT Work title: Improvement of Lentil ( Lens culinaris Medik.) through genetic transformation. Hashem, Rehana The future agriculture will depend more on legume crops because they all have high energy and high protein production for human and animal nutrition as well as amino acid profiles complementary to those of other crops, mainly cereals. The unique symbiotic ability of legumes is to use atmospheric nitrogen for plant growth makes them preferable crops for sustainable agriculture. Lentil is the 2nd most important grain legume that gained worldwide economic importance as a source of protein (25.5 – 28.31 %). In addition, it is also suitable as a rotation crop to replenish soil nitrogen levels. It is a crop of cooler temperature and is widely grown in the temperate zones of the world. The production of lentil is usually considerably below the established yield potential as this crop is very sensitive to particular biotic and abiotic stresses. The most serious biotic attribute constrain in lentils are the foliar diseases such as Ascochyta blight, rust, Stemphylium blight and Botrytis grey mold. Yield stability and productivity and the value of lentil could be greatly increased by the introduction of stably inherited traits such as pest and disease resistance, herbicide resistance or improved protein quality. These traits are not available in natural populations of near relatives of cultivated lentils, but current advances in plant genetic engineering provide a potentially powerful tool for achieving these goals by an alternative mean. The aim of the present study is therefore, the establishment of a reproducible and efficient transformation system for Lens culinaris Medik which is suitable for the insertion of agronomically desirable genes to overcome the limitations imposed by traditional breeding process. Along with this, another objective is to explore a simple marker free transformation system. Antibiotic resistance genes (e.g. npt II , hpt ) or herbicide resistance genes (e.g. bar ) are essential for selectively propagating transformed cells and tissues. However, subsequent maintenance of markers is unnecessary. Elimination of markers is advocated since it theoretically can not be excluded that antibiotic or herbicide resistance genes may be transferred to pathogenic bacteria or weeds, although the likelihoods are extremely low. The Bari Musur variety, BM4 was selected through its regeneration performance. Decapitated embryos with single cotyledon discs were selected as explant for transformation. The Agrobacterium strain EHA- 105 with the plasmid pSCP1 was used for transformation. The plasmid was harbouring the selectable marker gene bar , which encodes the enzyme phosphinothricin acetyltransferase (PAT) and a pgip gene from raspberry ( Rubus idaeus L.), I coding for polygalacturonase inhibitory protein. The expression of this recombinant gene can confer resistance against fungal pathogens ( Colletotrichum, Botrytis etc). The total procedure from seed to seed was between 2.5 - 4 months until getting transgenic lentil seeds. Transformation efficiency was found to be about 29%. For assessing the possibilities to develop a marker free transformation system, the bar-gene was removed and PGIP gene was kept in the T-DNA cassette before carrying out transformation work. Transformation with the new construct gave us a transformation success rate of 35% as estimated from the T 0 clones. The first analysis of a transformation rate of 35% will be confirmed by further analysis of the progenies. On the functional level, the plants were analyzed via a semi-quantitative polygalacturonase- inhibition assay. Activity of the pgip gene against Colletotrichum lupini, C. acutatum , Botrytis cinerea was tested. It was shown , the established method could provide a powerful tool to achieve markerfree transgenic lentil plants. Keywords : Agrobacterium , transgenic lentil, polygalacturonase inhibiting protein, antifungal resistance, marker-free transformation. II Zusamenfassung Arbeitstitel : Verbesserung der Linse ( Lens culinaris Medik.) durch genetische Transformation Hashem, Rehana Die Bedeutung von Leguminosen in der Landwirtschaft wird in Zukunft aufgrund ihres hohen Energie- und Proteingehalts für den Bereich der menschlichen und tierischen Ernährung steigen. Zusätzlich enthalten Hülsenfrüchte, im Vergleich zu anderen Feldfrüchten wie z.B. Getreide, ergänzende essentielle Aminosäuren. Die einzigartige Fähigkeit von Leguminosen über die Symbiose mit Rhizobien atmosphärischen Stickstoff für ihr Wachstum zu nutzen, macht sie zu bevorzugten Saaten in der nachhaltigen Landwirtschaft. Durch den hohen Proteingehalt (25,5-28,31%) gehört die Linse zu den wichtigsten Hülsenfrüchten weltweit. Des weiteren spielt sie eine wichtige Rolle in der Fruchtfolge zur Regeneration des Stickstoffs im Erdboden. Angebaut wird die Linse hauptsächlich in gemäßigten Zonen. Aufgrund der hohen Sensitivität gegenüber biotischen und abiotischen Stressfaktoren liegt die Produktivität der Linse oft weit unterhalb des möglichen Ertragspotentials. Eines der größten Probleme beim Linsenanbau stellen Blattfleckenkrankheiten wie Aschochyta und Mycospherella dar, aber auch Rost ( Uromyces ) und Grauschimmel ( Botrytis ), und bodenbürtige Erreger wie Aphanomyces euteiches sind von Bedeutung. Durch die Integration stabil vererbter Merkmale wie Schädlings- und Krankheitsresistenzen, Herbizidresistenz oder erhöhte Proteinqualität könnte die Ertragsstabilität und damit die Produktivität der Linse deutlich verbessert werden. Diese Eigenschaften sind im Genpool der Linse nicht vorhanden. Die Pflanzenbiotechnologie bietet hier leistungsfähige Werkzeuge für das Erreichen dieser Zielsetzungen. Das Ziel der vorliegenden Arbeit ist die Etablierung eines reproduzierbaren und effizienten Transformationssystems für Lens culinaris Medik., welches die Integration von `Genes of interest´ (GOI) ermöglicht und somit die Grenzen der traditionellen Züchtung überwindet. Des weiteren soll ein markerfreies Transformationssystem entwickelt werden. Antibiotika- oder Herbizidresistenzgene sind für die Selektion transformierter Zellen und Gewebe Sehr nützlich, zur weiteren Kultivierung jedoch nicht unbedingt erforderlich. Die Elimierung der Markergene ist erstrebenswert, da es theoretisch nicht ausgeschlossen werden kann, dass Antibiotika- und Herbizidresistenzen auf pathogene Bakterien oder Wildkräuter übertragen werden könnten, obwohl die Wahrscheinlichkeit hierfür sehr gering ist. Aufgrund der Regenerationsfähigkeit wurde die Sorte Bari Musur (BM4) ausgewählt. Für die Transformation wurden dekapitierte Embryonen mit einzelnen Kotyledonen als Explantate eingesetzt. III Für die Transformation wurde der Agrobakterium Stamm EHA 105, mit dem Plasmid pSCP1D verwendet. Das Plasmid enthält sowohl das selektierbare Markergen bar , welches für die Phosphinothricin Acetyltransferase (PAT) kodiert, sowie ein pgip Gen der Himbeere ( Rubus idaeus L.), das das Polygalakturonase inhibierende Protein kodiert. Die Expression dieses rekombinanten Gens kann eine erhöhte Pilzresistenz gegenüber Pathogenen wie z.B. Colletotrichum und Botrytis bewirken. Die gesamte Kulturdauer von Aussaat der Samen und Transformation bis zur Gewinnung von transgenen Linsensamen betrug 2,5 bis 4 Monate. Dabei konnte eine Transformationseffizienz von etwa 29% festgestellt werden. Zur Entwicklung eines markerfreien Transformationssystems das bar Gen aus dem Plasmid eliminiert, so dass die T-DNA nur noch das pgip Gen enthielt. Aufgrund der ersten molekularen Analysen ergab sich eine Transformationsrate von 35%, diese Ergebnisse sollen in zukünftigen Analysen der Nachkommenschaften noch verifiziert werden. Auf funktionaler Ebene erfolgte die Analyse der Pflanzen durch einen semi-quantitativen Agarose Diffusionstest. Getestet wurde die Aktivität des pgip Gens gegenüber pilzlichen Polygalacturonasen von Colletotrichum lupini , C. acutatum und Botrytis cinerea . Das neu etablierte Transformationssystem könnte also eine effektive Möglichkeit zur Herstellung gentechnisch verbesserter markerfreier Linsen darstellen. Keywords: Agrobakterium , transgene, Linsen, PGIP, Pilzresistanz, markerfrei transformation. IV Table of Contents: ABSTRACT ...........................................................................................................................I ABBREVIATIONS .............................................................................................................IX List of figures.....................................................................................................................XI List of tables ................................................................................................................... XIII 1. INTRODUCTION......................................................................................................... 1 2. LITERATURE REVIEW 2.1 Legumes and Pulses - importance ....................................................................................4
Recommended publications
  • Davis Expedition Fund Report on Expedition / Project
    DAVIS EXPEDITION FUND REPORT ON EXPEDITION / PROJECT Expedition/Project Title: Biogeography and Systematics of South American Vicia (Leguminosae) Travel Dates: 28/09/2010 – 12/11/2010 Location: Northern Chile and northern Argentina Group Members: Paulina Hechenleitner Collection of research material of Vicia in the form of Aims: herbarium specimens, habitat data, digital images, silica- dried leaf samples, and base-line data on the IUCN conservation status of Vicia. Outcome (not less than 300 words):- See attached report. Report for the Davis Expedition Fund Biogeography and Systematics of South American Vicia (Leguminosae) Botanical fieldwork to northern Chile and northern Argentina 28th of Sep to 12th of November 2010 Paulina Hechenleitner January 2011 Introduction Vicia is one of five genera in tribe Fabeae, and contains some of humanity's oldest crop plants, and is thus of great economic importance. The genus contains around 160 spp. (Lewis et al. 2005) distributed throughout temperate regions of the northern hemisphere and in temperate S America. Its main centre of diversity is the Mediterranean with smaller centres in North and South America (Kupicha, 1976). The South American species are least known taxonomically. Vicia, together with Lathyrus and a number of other temperate plant genera share an anti- tropical disjunct distribution. This biogeographical pattern is intriguing (Raven, 1963): were the tropics bridged by long distance dispersal between the temperate regions of the hemispheres, or were once continuous distributions through the tropics severed in a vicariance event? Do the similar patterns seen in other genera reflect similar scenarios or does the anti-tropical distribution arise in many different ways? The parallels in distribution, species numbers and ecology between Lathyrus and Vicia are particularly striking.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Erysiphe Trifolii Causing Powdery Mildew of Lentil (Lens Culinaris)
    Erysiphe trifolii Causing Powdery Mildew of Lentil (Lens culinaris) Renuka N. Attanayake, Department of Plant Pathology, Washington State University, Pullman; Dean A. Glawe, Department of Plant Pathology, Washington State University and College of Forest Resources, University of Wash- ington, Seattle; and Frank M. Dugan and Weidong Chen, USDA-ARS, Washington State University, Pullman times die (1). Infection by L. taurica re- ABSTRACT sults in lesions of varying size on leaves Attanayake, R. N., Glawe, D. A., Dugan, F. M., and Chen, W. 2009. Erysiphe trifolii causing and stems, with areas of infection display- powdery mildew of lentil (Lens culinaris). Plant Dis. 93:797-803. ing dense, felt-like mycelium. The taxonomy of the species of powdery The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of mildew infecting lentil in the United States the United States was investigated on the basis of morphology and rDNA internal transcribed has not been critically examined. This spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of study was initiated to clarify which species Erysiphe trifolii . However, teleomorphs formed chasmothecial appendages with highly branched of powdery mildew infects lentil in the apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus PNW. Because lentil plants used in genet- reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus ics and breeding research frequently are could be E. diffusa. Examination of morphological characters of an authentic specimen of E.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub
    US 2008O148432A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub. Date: Jun. 19, 2008 (54) TRANSGENIC PLANTS WITH ENHANCED Publication Classification AGRONOMIC TRAITS (51) Int. Cl. AOIH 5/00 (2006.01) CI2N 5/82 (2006.01) (76) Inventor: Mark Scott Abad, Webster Grove, CI2N 5/04 (2006.01) MO (US) (52) U.S. Cl. ......... 800/279: 800/281; 435/419,435/468; 8OO/320.1 Correspondence Address: (57)57 ABSTRACT MONSANTO COMPANY This invention provides transgenic plant cells with recombi 800 N. LINDBERGHBLVD, ATTENTION: GAIL nant DNA for expression of proteins that are useful for P. WUELLNER, IP PARALEGAL (E2NA) imparting enhanced agronomic trait(s) to transgenic crop ST. LOUIS MO 631.67 9 plants. This invention also provides transgenic plants and 9 progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use effi (21) Appl. No.: 11/374,300 ciency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing trans (22) Filed: Dec. 21, 2005 genic seed and plants with enhanced traits. Patent Application Publication Jun. 19, 2008 Sheet 1 of 3 US 2008/0148432 A1 Figure 1. 41905 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 127 O2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    [Show full text]
  • Wo 2009/134339 A2
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 5 November 2009 (05.11.2009) WO 2009/134339 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/82 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, PCT/US2009/002547 EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 24 April 2009 (24.04.2009) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, (26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/125,908 29 April 2008 (29.04.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): MON¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, SANTO TECHNOLOGY, LLC [US/US]; 800 North ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Lindbergh Boulevard, St.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops
    Journal of Biomedicine and Biotechnology • 2005:4 (2005) 326–352 • DOI: 10.1155/JBB.2005.326 RESEARCH ARTICLE Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops Gijs A. Kleter, Ad A. C. M. Peijnenburg, and Henk J. M. Aarts RIKILT, Institute of Food Safety, Wageningen University and Research Center, PO Box 230, 6700AE Wageningen, The Netherlands Received 18 October 2004; revised 30 May 2005; accepted 1 June 2005 The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically mod- ified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics of microbial transgenes other than antibiotic-resistance genes in market-approved genetically modified crops are reviewed. These characteristics include the microbial source, natural function, function in genetically modified crops, natural prevalence, geographical distribution, similarity to other microbial genes, known horizontal transfer activity, selective conditions and environments for horizontally transferred genes, and potential contribution to pathogenicity and virulence in hu- mans and animals. The assessment of this set of data for each of the microbial genes reviewed does not give rise to health concerns. We recommend including the above-mentioned items into the premarket safety assessment of genetically modified crops carrying transgenes other than those reviewed in the present study. INTRODUCTION the Organisation for Economic Cooperation and Devel- The cultivation of genetically modified (GM) crops opment (OECD) and International Life Sciences Institute has rapidly increased since their large-scale commercial (ILSI) have initiated this harmonisation.
    [Show full text]
  • CFIA ID Features of Fabaceae 2018
    Identification Features of Fabaceae & Application to Selected Species April 30th , 2018 Jennifer Neudorf, SSTS, CFIA © 2017 Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), all rights reserved. Use without permission is prohibited. Learning objectives for this course 1. Become familiar with the structures and features of the Fabaceae family that analysts use to gather information about their identity. 2. Know how to apply botany knowledge to distinguish selected species. 2 Introduction to Fabaceae Photo by: Sdecosta; https://shovelingwithsamantha.wordpress.com/2015/01/13/raising-alfalfa-seed-part-1-the- difference/ Photo from: J&L Candles Photo from: Barry Tilman, University of Florida Photo from: Pa Farm & Dairy https://www.farmanddairy.com/news/perdue-soybean-plant- doubles-pa-s-processing-capacity/446259.html 3 The Three Subfamiles of Fabaceae: Mimosoideae Photo from: Wikimedia commons Pleurogram Photo from: GRIN database (Steve Hurst) 4 The Three Subfamiles of Fabaceae: Caesalpinoideae Pleurogram Photo from: GRIN database (Steve Hurst) Photo from: Wikimedia commons 5 The Three Subfamiles of Fabaceae: Faboideae Photo from: Wikimedia commons 6 Fabaceae Legume and Seeds Photo from: Centre for Integrative Legume Research, University of Queensland Stem and flower Fruit / Seed Funiculus Style remnant Ovary Wall Remnant 7 Fabaceae Seed Anatomy Common vetch (Vicia sativa) Plumule Radicle Hilum Cotyledon Hilum Radicle Cotyledon 8 Fabaceae Seed Anatomy Alfalfa (Medicago sativa) Alsike clover (Trifolium hybridum) Hilum
    [Show full text]
  • Sachverzeichnis a – Viren (AVV) 434Ff
    629 Sachverzeichnis a – Viren (AVV) 434ff. Aktiengesellschaft (AG) 554ff. a-Faktor 197 Adenosin-Desaminase (ADA)-Mangel 429 Aktionspotenzial 33f., 89 AAV (adeno-assoziierte Viren) 434ff. Adenosin-Phosphorthioate 448 Aktivität Aberration 207 S-Adenosylmethionin (SAM) 146 – Katalysator 485 – chromatische 207 Adenovirus 53, 171f., 433ff. – transkriptionelle 262 – sphärische 207 – AD5-Virus 438 Akzeptor-Farbstoff 278f. ABC-Transporter 33, 51 – Expressionssystem 171 Akzeptor-Molekül Abfallbeseitigung von Industriechemikalien – Gentherapie 513 – fluoreszierendes 214 521 – Vektoren 436ff. Alanin 15f., 293, 318, 335ff. Abl-Onkogen 353 – Wildtyp-Adenoviren 171 Aldose 8f. Abrin A-Kette 370 Adenovirusgenom 171f. Aldosteron 13f., 35 Abschlussgewebe 55 Adenylat-Cyclase 34 Alemtuzumab 370, 416 Abschnitt ADEPT (antibody-directed enzyme pro-drug Alexa Fluor-Farbstoffe 273 – regulatorischer 73ff., 155, 255ff., 300 therapy) 413 Alge 43ff., 56, 94ff., 241, 499 Absorptionsspektrum Adhäsionsprotein 369, 456 Algorithmus – Farbstoff 278 Adipocyt (Fettzelle) 55 – heuristischer 294ff. Abstoßung 448 ADME-T (absorption, distribution, metabolism, Alignment 293ff. – Transplantat 382 excretion, and toxicity) 363 – Algorithmus 301 Abwasserreinigung ADR, s. adverse drug reaction – BLAST (basic local alignment search – anaerobe 507 ADP-Glucose 22 tool) 294 Acetolactat-Synthase-Gen 471 Adrenalin 34 – FASTA 294 Aceton 481, 497, 507 Adsorptionschromatographie 135 – global 294 – Proteinfällung 109 adulte Stammzelle 57 – lokal 294 Acetosyringon 464 Adventivsprossbildung 475
    [Show full text]
  • Hieracium Sinoaestivum (Asteraceae), a New Species from North China
    A peer-reviewed open-access journal PhytoKeys 39: 19–26Hieracium (2014) sinoaestivum (Asteraceae), a new species from North China 19 doi: 10.3897/phytokeys.39.7788 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Hieracium sinoaestivum (Asteraceae), a new species from North China Alexander N. Sennikov1,2 1 Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland 2 Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 2, 197376 St. Petersburg, Russia Corresponding author: Alexander N. Sennikov ([email protected]) Academic editor: V. Funk | Received 25 April 2014 | Accepted 28 May 2014 | Published 20 June 2014 Citation: Sennikov AN (2014) Hieracium sinoaestivum (Asteraceae), a new species from North China. PhytoKeys 39: 19–26. doi: 10.3897/phytokeys.39.7788 Abstract Hieracium sinoaestivum Sennikov sp. nov. is described as new to science and illustrated. This presumably apomictic species is solely known from two old collections made in a single locality in the Shanxi Province of China. It belongs to the hybridogenous group H. sect. Aestiva (H. sect. Prenanthoidea × H. sect. Umbel- lata) and is most similar to H. veresczaginii from southern Siberia. The new species occurs at low altitudes in the forest belt of Lülian Mts. and belongs to taiga forest elements. Keywords Apomictic species, boreal forest, Compositae, Shanxi, Siberia, taiga Introduction The genus Hieracium L. with its ca. 10000 species (Sell and Murrell 2006), the major- ity of which are presumably apomictic (Chrtek et al. 2007), has the greatest diversity in the mountains of Europe and the Caucasus (Zahn 1921–1922).
    [Show full text]
  • Title Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus Rhodochrous J1( Dissertation 全
    Organization and Regulation of Genes Involved in Nitrile Title Metabolism in Rhodococcus rhodochrous J1( Dissertation_全 文 ) Author(s) Komeda, Hidenobu Citation 京都大学 Issue Date 1996-05-23 URL https://doi.org/10.11501/3112279 Right Type Thesis or Dissertation Textversion author Kyoto University Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus rhodochrous 1 l Hidenobu Komeda 1996 CONTENTS I~ J RO DUCTIO'\ CII APTER I Anal)sis of H igh Molecular-:\-1as ... "-ilrile H)dratase (H-'-lHase) Gen e Cluster Scctton I Re~ulatol) genes for the exprc,ston ol catal~tically active 11-!\Hase SectiOn 2 lno;crtion 'cqucnce IS/ /64 in the H-'\Ha... e gene cluster 15 CHAPTER II Analysis of Low Molecular-Mass Mtrile H) dratase (L-NHase) Gene C lust er Secuon I CX·currenc~ of amidase<> in Rhodococc u.\ rhodochrow J I ..,,... _ Sc<.:lion 2 Amtdase coupled with L-N H a~e: Sequenctng and cxprc,ston of the gene and purification and charactcntAtion or the gene product 26 Section 1 Rcgulatol) genes required for the amtdc dependent induction of L-1\iHasc Section4 Cobalt tram.porter linked 10 L NH a:.e 60 CIIAPTER Ill Genetic Ana l)sis of Nitrilase Secuon I Sequencing and o'erexpression of the nitrilasc gene (mt\) and identification of an essential cysteine residue 73 SectiOn 2 Transcripllonal regulation of meA CON CLUSION 97 RFI< ERENCES 101 ACKNOWLF.I)G EME NTS 107 PUBLIC ATIONS 10~ 1!\TRODUCTIO" ABBRE\'IATIOt'l.~ bp Base pair(s) N1tnlc compounds containing a cyano function.al group such as cyanoglycosidcs.
    [Show full text]
  • Genetic Engineering – Sbb2102
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY UNIT – I – GENETIC ENGINEERING – SBB2102 1 rDNA TECHNOLOGY AND TOOLS INVOLVED IN GENETIC MANIPULATIONS 1. Recombinant DNA Technology: Through the years, scientists have studied the life and how it changes and adapts to the changes in the surroundings. One of their studies to cope up with the changes is through genetic modification. This process has been done indirectly to plants and animals to control their characteristics. Genetic modification is the process of changing the genetic makeup of an organism to express new traits. Modern biotechnology has made it much easier and faster in targeting specific genes to alter through genetic engineering. One of the most known technologies used in genetic engineering is Recombinant DNA Technology. DNA exists in the cells of all living things. These long chains of amino acids serve as the genetic blueprints for living organisms. DNA controls how they form before birth and which traits they pass on to the next generation. Recombinant DNA exists in a laboratory by combining genetic material from multiple sources. Recombinant DNA technology can create new kinds of living organisms or alter the genetic code of existing organisms. As with most technology, there are great benefits and notable downsides to the use of recombinant DNA technology. 1.1.Pros of Recombinant DNA Technology Recombinant DNA technology, sometimes referred to as "genetic engineering," can benefit people in several ways. For example, scientists made artificial human insulin with the help of recombinant DNA technology. Diabetic people cannot produce their own insulin, which they need in order to process sugar.
    [Show full text]