Sachverzeichnis a – Viren (AVV) 434Ff

Total Page:16

File Type:pdf, Size:1020Kb

Sachverzeichnis a – Viren (AVV) 434Ff 629 Sachverzeichnis a – Viren (AVV) 434ff. Aktiengesellschaft (AG) 554ff. a-Faktor 197 Adenosin-Desaminase (ADA)-Mangel 429 Aktionspotenzial 33f., 89 AAV (adeno-assoziierte Viren) 434ff. Adenosin-Phosphorthioate 448 Aktivität Aberration 207 S-Adenosylmethionin (SAM) 146 – Katalysator 485 – chromatische 207 Adenovirus 53, 171f., 433ff. – transkriptionelle 262 – sphärische 207 – AD5-Virus 438 Akzeptor-Farbstoff 278f. ABC-Transporter 33, 51 – Expressionssystem 171 Akzeptor-Molekül Abfallbeseitigung von Industriechemikalien – Gentherapie 513 – fluoreszierendes 214 521 – Vektoren 436ff. Alanin 15f., 293, 318, 335ff. Abl-Onkogen 353 – Wildtyp-Adenoviren 171 Aldose 8f. Abrin A-Kette 370 Adenovirusgenom 171f. Aldosteron 13f., 35 Abschlussgewebe 55 Adenylat-Cyclase 34 Alemtuzumab 370, 416 Abschnitt ADEPT (antibody-directed enzyme pro-drug Alexa Fluor-Farbstoffe 273 – regulatorischer 73ff., 155, 255ff., 300 therapy) 413 Alge 43ff., 56, 94ff., 241, 499 Absorptionsspektrum Adhäsionsprotein 369, 456 Algorithmus – Farbstoff 278 Adipocyt (Fettzelle) 55 – heuristischer 294ff. Abstoßung 448 ADME-T (absorption, distribution, metabolism, Alignment 293ff. – Transplantat 382 excretion, and toxicity) 363 – Algorithmus 301 Abwasserreinigung ADR, s. adverse drug reaction – BLAST (basic local alignment search – anaerobe 507 ADP-Glucose 22 tool) 294 Acetolactat-Synthase-Gen 471 Adrenalin 34 – FASTA 294 Aceton 481, 497, 507 Adsorptionschromatographie 135 – global 294 – Proteinfällung 109 adulte Stammzelle 57 – lokal 294 Acetosyringon 464 Adventivsprossbildung 475 – multiples 293ff. Acetyl-CoA 42ff., 498 adverse drug reaction (ADR) 512 – paarweiser Vergleich 293 Acetyl-CoA-Transferase 340 AEC (Aminoethylcystein) 501f. Alignment-Statistik 294 Acetylcholin-Rezeptor (nAChR) Aequorea victoria 171, 277, 466ff. alkalische Phosphatase 148 – nicotinischer 34 Aequorin 359 Alkaloide 40 N-Acetylglucosamin 8ff., 88f. aerober Organismus 42 Alkohol-Oxidase 1 (AOX1) 167, 181 Acetylierung 66, 127, 339 affines gap-cost-Modell 293 Alkohole Acetylsalicylsäure (Aspirin) 13, 374, 544 Affinitätsassay 309 – optisch aktive 491 Achromobacter sp. 471 Affinitätschromatographie 135f., 166, 178, Alkoholfällung 132ff., 173 Ackerschmalwand (Arabidopsis thaliana) 93, 408 Alkoholpräzipitation 132 158, 255, 465 Affinitätssäule 133 Alkylierungsmittel 495 AcNPV (Autographa californica nuclear AFLP (amplified fragment length polymorphism) Allele polyhedrosisvirus) 182 238f., 268 – allelspezifische Hybridisierung 391 Acridinorange 198f., 495 AFLP-based mRNA Fingerprinting 268 – Expression von dominant-negativen Allelen ACRS (amplification-created restriction sites) AG (Aktiengesellschaft) 554ff. – krankheitsassoziierte 381 390 Agarose 110ff., 136 – Mikrosatelliten- 153 G-Actin 48 – Glutathion-Agarose 116 Allianz Actinfilament 48ff. Agarose-Gelektrophorese 136 – strategische 565ff. Acyclovir 369f. – Pulsed-Field-Agarose-Gelelektrophorese 137 allosterische Liganden 21 Acyl-CoA-Carboxylase 500 Agonist 18, 360ff. alpha-Faktor (Paarungspheromon) 197 Acyldonor 492 Agrobacterium 463ff. Altern 66 Acylglycerid 491 – rhizogenes 463 Alu-Sequenz 64 (Acyloxy)alkyl-Phosphonate 375 – Transformationssystem 463 Alveolata 3, 95 ADA (Adenosin-Desaminase)-Mangel 429 – tumefaciens 463ff. Alzheimer-Krankheit 425 Adaptorprotein 88, 441 – – Plasmid 463 Amidohydrolase (b-Lactamase) 163 Adaptorsequenz 153 Agrobacterium-vermittelter Gentransfer 477 Amine Adenin 22, 70ff., 297, 341f., 495 Ähnlichkeitsmaß 293ff. – optisch aktive 491 –N6-Methyladenin 77 AIDS (acquired immune deficiency 7-Aminoactinomycin D 198 adeno-assoziierte syndrome) 18, 53, 429ff., 445 Aminoethyl-Glycin-Rückgrat 446 – Vektoren (AVV-Vektoren) 438ff. Aktien 562 Aminoethylcystein (AEC) 501f. Molekulare Biotechnologie: Konzepte, Methoden und Anwendungen, 2. Aufl. Herausgegeben von Michael Wink Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32665-6 630 Sachverzeichnis Aminoglykosid-Antibiotika 470 – Resistenz-Plasmide 52, 159 Antisense-Experimente 443 5-Aminosalicylsäure 376 Antigen 20 Antisense-Oligonucleotide 453 Aminosäure 7ff., 72ff., 483 – antigene Fusionsanteile 170 Antisense-RNA 28 – d-Aminosäuren 14 – tumor-assozierte 413 Antisense-Technik 453f. – l-Aminosäuren 14 – Tumorzell-Oberflächenantigene 372 – DNA-Analoga 453 – essentielle 14, 460 – Veränderung der Oberflächenantigene 53 Antisense-Therapie 443, 513 – Seitenkette 112, 342 Antigenbindungsstelle 401ff. – Antisense-Medikamente 511 – Sequenz 155, 383ff. Antikoagulantien 484 Anziehungskraft – Signatur 350 Antikörper 20, 355, 370, 399ff. – hydrophobe 16 Aminosäurezusammensetzung 335 – ADEPT (antibody-directed enzyme pro-drug AOX1 (Alkohol-Oxidase)-Gen 167 Aminoterminus 14,124, 411 therapy) 413 AOX1-Promotor 167, 181 Ammoniumsulfatfällung 109 – antibody-engineering 399, 416 Apoptose 453 Ammoniumsulfatlösung 117 – Antikörper-Chip 394 Aprotinin 104 Amoeba 95, 241 – Array 516 AQUA-Peptide 130 amphipathische Helix 292 – Avidin-gekoppelter 370 Aquaporine 31 amphipathisches Moment 292 – bifunktionelle 402ff. Arabidopsis thaliana (Ackerschmalwand) 93, Ampholyt 108 – Bildung 384 158, 255, 465 Amphotericin B 31 – Bindungsspezifität 399 – Arabidopsis Information Resource 665 Ampicillin 213, 477 – bispezifische 371, 402ff. – Modellpflanze 465 – Resistenz 163, 183, 454 – Chip 394 Arachidonsäure 13 – Resistenzgen 159 – hypervariable Region 399f. Arachnida (Spinnentiere) 98 Amplifikation 152ff., 259, 387f. – IgG 415 Archaea 3 – ACRS (amplification-created restriction – IgM 412 – Stammbaum 94 sites) 390 – intrazelluläre 417 Archaebakterien 60, 93 – AFLP (amplified fragment length poly- – Kamel-Antikörper 412 Archaeoglobus fulgidus 60 morphism) 238f., 268 – klinisch zugelassene therapeutische Arginin 15f. – ARMS (amplification refractory mutation (Übersicht) 416 Argonionenlaser 220, 278 system) 391 – konstante Domäne (Region) 399f. ARMS (amplification refractory mutation – DNA-Amplifikation 63, 162 – leichte und schwere Kette 399f. system) 391 – RACE (rapid amplification of cDNA – monoklonale 370ff., 401 Array 235, 262 ends) 153, 260 ––Übersicht 484 – Antikörper 516 – RAPD (random amplification of polymorphic – polyklonale 401 – CGH 394 DNA) 239 – rekombinante 401ff. – Cosmid 236 Amplitudendifferenz 208 – – Anwendungen 416ff. – DNA 268, 283 AMV (avian myeoblastosis virus) 151 – – Formate 409 – globale 274f. Amylase 21 – – Forschung 417 – Hybridisierung 269f. Amyloide 425 – – Fusionsproteine 410 – in situ synthetisierte 274 – Amyloid-Vorläuferprotein (APP) 425 – – Gewinnung 402 – Makroarray 235 Amylopektin 10 – – Herstellung 407 – Mikroarray 235 Amylose 10 ––in vitro-Diagnostik 417 – Oligonucleotid 290 Anabolismus 46f. – – Kreuzreaktivität 417 – print-array 274 anaerobe Organismen 42 – – neue Eigenschaften 401 – Protein 516 Anaphase 66ff., 194 – – Proteomforschung 417 – Sonden 391 ancestor – – Reinigung 407 – spezifische 275 – common 298 – – Selektionssysteme 403 – Spezifität und Sensitivität 275 Androgene 14 – – spezifische 402 – tissue array 262f. Angiospermae (Bedecktsamer) 96 – – Systeme zur Produktion (Übersicht) 408 – Zell 516 Anionenaustauscher 112f. – single chain-Fv-Fragment 411 ArrayExpress 290 Anionenaustauscher-Chromatographie 113 – single domain-VH-Antikörper 412 ARS (Autonom replizierende Sequenzen) 167 Anker-Primer (anchor) 267 – tetravalenter 415 Arthropoda (Gliederfüßer) 98 Ankerprotein 34 – Therapeutika 370, 401 Arzneimittel ANN (artificial neural networks/künstliche – therapeutisch eingesetzte (Übersicht) 371, – neues (investigational new drug application, neuronale Netze) 287, 300ff. 509ff. IND) 363, 537f. Annealing 150f. – variable Domäne 400 Arzneimittelzulassung 531ff. Annelida (Ringelwürmer) 98 –VH-Antikörper 412 – gegenseitige Anerkennung 535 Anopheles gambiae 241 Antikörperfragmente – internationale Harmonisierung Anregungsspektrum – bifunktionelle 413 der Regulierung 540 – Farbstoff 278 – Fab 411 – Regulierung in den USA 535 Anreicherungstest von Gengruppen 312 – Fv 411f. – Regulierung innerhalb der Europäischen Antagonisten 18, 360ff. – monospezifische 409 Union 531ff. Antherenkultur 476 – multivalente 412 – Verfahren 537 Anti-Gen-Therapie 443, 511 – single chain (sc) 411 AsaMin 324 Antiangiogenese 372 – spezifischer und hochaffine 405 Asparagin 15f. Antibiotika 14, 31, 50, 80f., 394 Antikörper-mRNA 406 Asparaginsäure 15 – Herstellung 52, 494 Antikörpergene 399ff. Aspartat 16 – b-Lactam-Antibiotika 374 Antikörpertherapeutika 401 Aspartat-Kinase 500f. – Resistenz 159ff., 179ff., 469ff. Antiport 33 Aspartatsemialdehyd-Dehydrogenase 500 – Resistenzgene 467ff. Antipyretikum 544 Aspirin (Acetylsalicylsäure) 13, 374, 544 Sachverzeichnis 631 Assay – Sequenzierung des Genoms 227 Bioinformatik 227, 287ff. – Affinitätsassay 309 Bacteria 3 – Datenquellen 288ff. – Band-shift (EMSA) 344 – Stammbaum 94 – evolutionäre 296ff. – Bindungsassay 359ff. Baculovirus 434ff. – Genvorhersage 300f. – Design 280 – rekombinantes 182 – Sequenzanalyse 291ff. – Enzym-gekoppelter, s. ELISA Bakterien 50 – Software 308 – Filterbindung 359 – Archaebakterien 93 – Transkriptom- und Proteomanalyse 302ff. – FRET 361 – Aufbau 51f. Biokatalysatoren 20 – Hochdurchsatz-Assay (high throughput – BAC, s. BAC – Identifizierung 487 assay) 280, 358 – Eubakterien 93 – Produktion 489f. – Präzipitations-/Filtrationsassay 359 – Expressionssystem 176 – Verbesserung 489 – Reportergen 351ff. – Expressionvektor 166, 176 Biokatalyse 481ff. – SPA (scintillation proximity assay) 359 – gramnegative 50f. – chemische Industrie 481ff. – zellbasierte 280 – grampositive 50f. – industriellen 489 – zelluläre Assays
Recommended publications
  • INTRODUCTION Sirna and Rnai
    J Korean Med Sci 2003; 18: 309-18 Copyright The Korean Academy ISSN 1011-8934 of Medical Sciences RNA interference (RNAi) is the sequence-specific gene silencing induced by dou- ble-stranded RNA (dsRNA). Being a highly specific and efficient knockdown tech- nique, RNAi not only provides a powerful tool for functional genomics but also holds Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National a promise for gene therapy. The key player in RNAi is small RNA (~22-nt) termed University, Seoul, Korea siRNA. Small RNAs are involved not only in RNAi but also in basic cellular pro- cesses, such as developmental control and heterochromatin formation. The inter- Received : 19 May 2003 esting biology as well as the remarkable technical value has been drawing wide- Accepted : 23 May 2003 spread attention to this exciting new field. V. Narry Kim, D.Phil. Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, Korea Key Words : RNA Interference (RNAi); RNA, Small interfering (siRNA); MicroRNAs (miRNA); Small Tel : +82.2-887-8734, Fax : +82.2-875-0907 hairpin RNA (shRNA); mRNA degradation; Translation; Functional genomics; Gene therapy E-mail : [email protected] INTRODUCTION established yet, testing 3-4 candidates are usually sufficient to find effective molecules. Technical expertise accumulated The RNA interference (RNAi) pathway was originally re- in the field of antisense oligonucleotide and ribozyme is now cognized in Caenorhabditis elegans as a response to double- being quickly applied to RNAi, rapidly improving RNAi stranded RNA (dsRNA) leading to sequence-specific gene techniques.
    [Show full text]
  • Annale D890ahlfors.Pdf (5.211Mb)
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. D OSA - TOM. 890 MEDICA - ODONTOLOGICA INTERLEUKIN-4 INDUCED LEUKOCYTE DIFFERENTIATION by Helena Ahlfors TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2009 From Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; Department of Medical Biochemistry and Molecular Biology, University of Turku and National Graduate School of Informational and Structural Biology Supervised by Professor Riitta Lahesmaa, M.D., Ph.D. Turku Centre for Biotechnology University of Turku and Åbo Akademi University Turku, Finland Reviewed by Professor Risto Renkonen M.D., Ph.D. Transplantation laboratory Haartman Institute University of Helsinki Helsinki, Finland and Docent Panu Kovanen, M.D., Ph.D. Haartman Institute Department of Pathology University of Helsinki Helsinki, Finland Opponent Assistant Professor Mohamed Oukka, Ph.D. Seattle Children’s Research Institute Department of Immunology University of Washington Seattle, USA ISBN 978-951-29-4183-4 (PRINT) ISBN 978-951-29-4184-1 (PDF) ISSN 0355-9483 Painosalama Oy – Turku, Finland 2009 Think where mans glory most begins and ends, and say my glory was I had such friends. William Butler Yeats (1865 – 1939) ABSTRACT Helena Ahlfors Interleukin-4 induced leukocyte differentiation Turku Centre for Biotechnology, University of Turku and Åbo Akademi University Department of Medical Biochemistry and Genetics, University of Turku National Graduate School of Informational and Structural Biology, 2009 Monocytes, macrophages and dendritic cells (DCs) are important mediators of innate immune system, whereas T lymphocytes are the effector cells of adaptive immune responses. DCs play a crucial role in bridging innate and adaptive immunity. Naïve CD4+ Th progenitors (Thp) differentiate to functionally distinct effector T cell subsets including Th1, Th2 and Th17 cells, which while being responsible for specific immune functions have also been implicated in pathological responses, such as autoimmunity, asthma and allergy.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub
    US 2008O148432A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0148432 A1 Abad (43) Pub. Date: Jun. 19, 2008 (54) TRANSGENIC PLANTS WITH ENHANCED Publication Classification AGRONOMIC TRAITS (51) Int. Cl. AOIH 5/00 (2006.01) CI2N 5/82 (2006.01) (76) Inventor: Mark Scott Abad, Webster Grove, CI2N 5/04 (2006.01) MO (US) (52) U.S. Cl. ......... 800/279: 800/281; 435/419,435/468; 8OO/320.1 Correspondence Address: (57)57 ABSTRACT MONSANTO COMPANY This invention provides transgenic plant cells with recombi 800 N. LINDBERGHBLVD, ATTENTION: GAIL nant DNA for expression of proteins that are useful for P. WUELLNER, IP PARALEGAL (E2NA) imparting enhanced agronomic trait(s) to transgenic crop ST. LOUIS MO 631.67 9 plants. This invention also provides transgenic plants and 9 progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use effi (21) Appl. No.: 11/374,300 ciency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing trans (22) Filed: Dec. 21, 2005 genic seed and plants with enhanced traits. Patent Application Publication Jun. 19, 2008 Sheet 1 of 3 US 2008/0148432 A1 Figure 1. 41905 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 127 O2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    [Show full text]
  • Improvement of Lentil (Lens Culinaris Medik.) Through Genetic Transformation
    Improvement of Lentil ( Lens culinaris Medik.) through Genetic Transformation Von der Naturwissenschaftlichen Fakultät Der Gottfried Wilhelm Leibniz Universität Hannover Zur Erlangung des Grades einer DOKTORIN DER NATURWISSENSCHAFTEN Dr. rer. nat. genehmigte Dissertation Von M.Sc. Rehana Hashem Geboren am 23.10.1971 in Dhaka, Bangladesh 2007 Referent: Prof. Dr. Hans - Jörg Jacobsen Korreferent: Prof. Dr. Edgar Maiß Prüfungsvorsitz: Prof. Dr. Bernhard Huchzemeyer Tag der Promotion: 23 February 2007 Dedicated to my beloved parents And My respected teachers ABSTRACT Work title: Improvement of Lentil ( Lens culinaris Medik.) through genetic transformation. Hashem, Rehana The future agriculture will depend more on legume crops because they all have high energy and high protein production for human and animal nutrition as well as amino acid profiles complementary to those of other crops, mainly cereals. The unique symbiotic ability of legumes is to use atmospheric nitrogen for plant growth makes them preferable crops for sustainable agriculture. Lentil is the 2nd most important grain legume that gained worldwide economic importance as a source of protein (25.5 – 28.31 %). In addition, it is also suitable as a rotation crop to replenish soil nitrogen levels. It is a crop of cooler temperature and is widely grown in the temperate zones of the world. The production of lentil is usually considerably below the established yield potential as this crop is very sensitive to particular biotic and abiotic stresses. The most serious biotic attribute constrain in lentils are the foliar diseases such as Ascochyta blight, rust, Stemphylium blight and Botrytis grey mold. Yield stability and productivity and the value of lentil could be greatly increased by the introduction of stably inherited traits such as pest and disease resistance, herbicide resistance or improved protein quality.
    [Show full text]
  • Wo 2009/134339 A2
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 5 November 2009 (05.11.2009) WO 2009/134339 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/82 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, PCT/US2009/002547 EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 24 April 2009 (24.04.2009) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, (26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/125,908 29 April 2008 (29.04.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): MON¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, SANTO TECHNOLOGY, LLC [US/US]; 800 North ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Lindbergh Boulevard, St.
    [Show full text]
  • Beyond Microrna Â
    Cancer Letters xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Mini-review Beyond microRNA – Novel RNAs derived from small non-coding RNA and their implication in cancer ⇑ Elena S. Martens-Uzunova , Michael Olvedy, Guido Jenster Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands article info abstract Article history: Over the recent years, Next Generation Sequencing (NGS) technologies targeting the microRNA transcrip- Available online xxxx tome revealed the existence of many different RNA fragments derived from small RNA species other than microRNA. Although initially discarded as RNA turnover artifacts, accumulating evidence suggests that Keywords: RNA fragments derived from small nucleolar RNA (snoRNA) and transfer RNA (tRNA) are not just random snoRNA-derived RNA (sdRNA) degradation products but rather stable entities, which may have functional activity in the normal and tRNA fragment (tRF) malignant cell. Next generation sequencing This review summarizes new findings describing the detection and alterations in expression of Cancer snoRNA-derived (sdRNA) and tRNA-derived (tRF) RNAs. We focus on the possible interactions of sdRNAs microRNA Non-coding RNA and tRFs with the canonical microRNA pathways in the cell and present current hypotheses on the func- tion of these RNAs. Ó 2013 Elsevier Ireland Ltd. All rights reserved. 1. Introduction Alongside with miRNA, other types of small regulatory ncRNAs like exogenous and endogenous small interfering RNAs (siRNAs Within less than a decade since the sequencing of the human and endo-siRNAs) [6–8] and PiWi-interacting RNAs (piRNAs) [9] genome it became clear that over ninety percent of our genes en- are also involved in gene regulation and genome defense and share code for RNA transcripts that never get translated to protein.
    [Show full text]
  • Interference Interfering RNA-Mediated RNA Inhibition Of
    Inhibition of HIV-1 Infection by Small Interfering RNA-Mediated RNA Interference John Capodici, Katalin Karikó and Drew Weissman This information is current as J Immunol 2002; 169:5196-5201; ; of September 29, 2021. doi: 10.4049/jimmunol.169.9.5196 http://www.jimmunol.org/content/169/9/5196 Downloaded from References This article cites 27 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/169/9/5196.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Inhibition of HIV-1 Infection by Small Interfering RNA-Mediated RNA Interference1 John Capodici,* Katalin Kariko´,† and Drew Weissman2* RNA interference (RNAi) is an ancient antiviral response that processes dsRNA and associates it into a nuclease complex that identifies RNA with sequence homology and specifically cleaves it.
    [Show full text]
  • Dan Graur Department of Biology & Biochemistry University Of
    Down with ncRNA! Long live fRNA and jRNA! Dan Graur Department of Biology & Biochemistry University of Houston Science & Research Building 2 3455 Cullen Blvd. Suite #342 Houston, TX 77204-5001 Voice: 713-743-7236 Fax: 713-743-2636 Email: [email protected] 1 Abstract Noncoding RNA (ncRNA) and long noncoding RNA (lncRNA) are scientifically invalid terms because they define molecular entities according to properties they do not possess and functions they do not perform. Here, I suggest retiring these two terms. Instead, I suggest using an evolutionary classification of genomic function, in which every RNA molecule is classified as either “functional” or “junk” according to its selected effect function. Dealing with RNA molecules whose functional status is unknown require us to phrase Popperian nomenclatures that spell out the conditions for their own refutation. Thus, in the absence of falsifying evidence, RNA molecules of unknown function must be considered junk RNA (jRNA). 2 Negative descriptions in biology are generally considered invalid. That is, biological entities cannot be solely defined by what they do not possess or do not do. Hence, for instance, the taxon Pisces (fishes) has been deemed scientifically invalid even before its monophyletic status was refuted, because the definition of Pisces involved a single negative character state—the lack of limbs with digits. The same principles should apply to the taxonomy of molecular entities. In the scientific literature, the modifiers “non-coding,” “noncoding,” and “nc” are widely used as prefixes for “DNA” and “RNA.” As of September 1, 2017, these terms appear more than 45,000 times in Google Scholar.
    [Show full text]
  • Exportin-5 Mediates the Nuclear Export of Pre-Micrornas and Short Hairpin Rnas
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION Exportin-5 mediates the miRNA biogenesis is the nuclear excision of the upper part of this RNA hairpin to give the ∼65-nt pre-miRNA nuclear export of intermediate (Lee et al. 2002; Zeng and Cullen 2003). pre-microRNAs and short This processing step is performed by human RNAse III, also called ‘Drosha’ (Lee et al. 2003). The pre-miRNA hairpin RNAs intermediate, which in the case of human miR-30 con- sists of a 63-nt hairpin bearing a 2-nt 3Ј overhang, is then 2 3 3 Rui Yi, Yi Qin, Ian G. Macara, and exported to the cytoplasm by a currently unknown Bryan R. Cullen1,2,4 mechanism. Once there, the pre-miRNA is processed by a second RNAse III family member called ‘Dicer’ to give 1 2 Howard Hughes Medical Institute and Department of the mature ∼22-nt miRNA (Grishok et al. 2001; Molecular Genetics and Microbiology, Duke University Hutvágner et al. 2001; Ketting et al. 2001). The miRNA Medical Center, Durham, North Carolina 27710, USA; is then incorporated into the RNA-induced silencing 3 Center for Cell Signaling, University of Virginia, complex (RISC), where it functions to guide RISC to ap- Charlottesville, Virginia 22908, USA propriate mRNA targets (Hammond et al. 2000; Martinez et al. 2002; Mourelatos et al. 2002; Schwarz et al. 2002). MicroRNAs (miRNAs) are initially expressed as long In addition to miRNAs, cells can also generate similar ∼ transcripts that are processed in the nucleus to yield 65- ∼22-nt noncoding RNAs called small interfering RNAs nucleotide (nt) RNA hairpin intermediates, termed pre- (siRNA), by Dicer processing of long double-stranded miRNAs, that are exported to the cytoplasm for addi- RNAs (dsRNAs; Zamore et al.
    [Show full text]
  • Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops
    Journal of Biomedicine and Biotechnology • 2005:4 (2005) 326–352 • DOI: 10.1155/JBB.2005.326 RESEARCH ARTICLE Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops Gijs A. Kleter, Ad A. C. M. Peijnenburg, and Henk J. M. Aarts RIKILT, Institute of Food Safety, Wageningen University and Research Center, PO Box 230, 6700AE Wageningen, The Netherlands Received 18 October 2004; revised 30 May 2005; accepted 1 June 2005 The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically mod- ified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics of microbial transgenes other than antibiotic-resistance genes in market-approved genetically modified crops are reviewed. These characteristics include the microbial source, natural function, function in genetically modified crops, natural prevalence, geographical distribution, similarity to other microbial genes, known horizontal transfer activity, selective conditions and environments for horizontally transferred genes, and potential contribution to pathogenicity and virulence in hu- mans and animals. The assessment of this set of data for each of the microbial genes reviewed does not give rise to health concerns. We recommend including the above-mentioned items into the premarket safety assessment of genetically modified crops carrying transgenes other than those reviewed in the present study. INTRODUCTION the Organisation for Economic Cooperation and Devel- The cultivation of genetically modified (GM) crops opment (OECD) and International Life Sciences Institute has rapidly increased since their large-scale commercial (ILSI) have initiated this harmonisation.
    [Show full text]
  • RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges
    1521-0081/72/4/862–898$35.00 https://doi.org/10.1124/pr.120.019554 PHARMACOLOGICAL REVIEWS Pharmacol Rev 72:862–898, October 2020 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: RHIAN M. TOUYZ RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges Ai-Ming Yu, Young Hee Choi, and Mei-Juan Tu Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.) Abstract. ....................................................................................863 Significance Statement ......................................................................863 I. Introduction. ..............................................................................863 II. Classification and General Features of RNA-Based Therapeutics .............................864 III. RNAs as Therapeutic Drugs .................................................................865 A. The Rise and Promise of RNA Therapeutics ..............................................865 B. Types of RNA Drugs and Mechanisms of Action ..........................................866 1. Antisense Oligonucleotides ...........................................................866 Downloaded from 2. Small Interfering RNAs . ............................................................868
    [Show full text]
  • Title Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus Rhodochrous J1( Dissertation 全
    Organization and Regulation of Genes Involved in Nitrile Title Metabolism in Rhodococcus rhodochrous J1( Dissertation_全 文 ) Author(s) Komeda, Hidenobu Citation 京都大学 Issue Date 1996-05-23 URL https://doi.org/10.11501/3112279 Right Type Thesis or Dissertation Textversion author Kyoto University Organization and Regulation of Genes Involved in Nitrile Metabolism in Rhodococcus rhodochrous 1 l Hidenobu Komeda 1996 CONTENTS I~ J RO DUCTIO'\ CII APTER I Anal)sis of H igh Molecular-:\-1as ... "-ilrile H)dratase (H-'-lHase) Gen e Cluster Scctton I Re~ulatol) genes for the exprc,ston ol catal~tically active 11-!\Hase SectiOn 2 lno;crtion 'cqucnce IS/ /64 in the H-'\Ha... e gene cluster 15 CHAPTER II Analysis of Low Molecular-Mass Mtrile H) dratase (L-NHase) Gene C lust er Secuon I CX·currenc~ of amidase<> in Rhodococc u.\ rhodochrow J I ..,,... _ Sc<.:lion 2 Amtdase coupled with L-N H a~e: Sequenctng and cxprc,ston of the gene and purification and charactcntAtion or the gene product 26 Section 1 Rcgulatol) genes required for the amtdc dependent induction of L-1\iHasc Section4 Cobalt tram.porter linked 10 L NH a:.e 60 CIIAPTER Ill Genetic Ana l)sis of Nitrilase Secuon I Sequencing and o'erexpression of the nitrilasc gene (mt\) and identification of an essential cysteine residue 73 SectiOn 2 Transcripllonal regulation of meA CON CLUSION 97 RFI< ERENCES 101 ACKNOWLF.I)G EME NTS 107 PUBLIC ATIONS 10~ 1!\TRODUCTIO" ABBRE\'IATIOt'l.~ bp Base pair(s) N1tnlc compounds containing a cyano function.al group such as cyanoglycosidcs.
    [Show full text]