STUDIES in CHEMOTHERAPY PREPARATION of CERTAIN ACRIDINE DERIVATIVES a Thesis Presented in Fulfillment of the Requirements for Th

Total Page:16

File Type:pdf, Size:1020Kb

STUDIES in CHEMOTHERAPY PREPARATION of CERTAIN ACRIDINE DERIVATIVES a Thesis Presented in Fulfillment of the Requirements for Th '• V ... • -■.6'; * i'„ S' (<. ".. *• STUDIES IN CHEMOTHERAPY PREPARATION OF CERTAIN ACRIDINE DERIVATIVES \ U A thesis presented in fulfillment of the requirements for / the degree of Doctor of Philosophy at the University of Glasgow v <. ** ... ■. i •" r • - ■■ . ~ - «■ t I* ... - >.*v, >r:.v;•/••' r • \ >. • .> - • .v ~ . v. - ■?«■-*223®$^:-• r fey Margaret Joan Hunter I \ \ k /1I _ y . • •• A v % , _ um • . *• V * ' •tw* . •« J u * . .* • :-* -.i• * -. V. — .-• •" -* . « — . i ’ ’ v»-sr » •. ProQuest Number: 13855720 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13855720 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 The author wishes to acknowledge the assistance and encouragement given by the late Professor F.J. Wilson, Dr. M.Jff. J. Sutherland and, Professor W.M. Cumming. CONTENTS Introduction....... 2 Nomenclature .... 2 Preparation of Acridine Derivatives....... 3- Properties of Acridine Derivatives................. 11 Preparation of Nitriles ....... 13 Therapeutic Activity................................... 15 Introductory. ................. 15 Structure and Activity........... 17 Mode of Action.................... 19 Effects on Host...........’....... 22 Uses.............. 23 Activity of Amidine Grouping.... ^ * * .. 24 Reasons for Research... ................. 25 Part I Theoretical . 28 Experimental........................... ........ :...... 40 Preparation of 2-cyaho-8-aminoacridine.............. 40 Preparation of 2,8-dicyanoacridine.................. 43 Preparation of 5-cyanoacridine . ....... 46 Preparation of 5-amidinoacridine ..... 55 Part II Theoretical. J. 62 Experimental, ................... 80 Syntheses of 1-cyanoacridines * Preparation of 2-aminobenzonitrile................ 84 Preparation of 2 -cyanodiphenylamine-2- carhoxylic acid. ............... 87 Preparation of 1-cyanoacridone * .88,106 Preparation of l-cyano-5-ehloroacridine..... 89,106 Preparation of l-amidino-5-aminoacridine........... 91 A Preparation of 1-cyanoacridine................ 92 Preparation of l-cyano-5-ethoxyacridine............. 95 Preparation of 3-cyano-2-bromobenzoic acid.......... 97 Preparation of 6-cyanodiphenylamine-2- carboxylic acid................................ 304,108,X9 Preparation of sodium 2-bromo-3-cyanobenzoate...... 108 Syntheses of 2- and 4-cyanoacridines Preparation of 3-aminobenzonitrile............... 110 Preparation of 3 -cyanodiphenylamine-2- carboxylic acid...................... 112 Preparation of 2- and 4-cyanoacridones............ 113 Preparation of 2- and 4-cyano-5-chloroacridines 114 Separation of 2- and 4-cyanoacridones.............. 115 Preparation of 2-cyano-5-chloroacridine........... 118,134 Preparation of 4-cyano-5-chloroacridine........... 119 Preparation of 4-amidino-5-aminoacridine.......... 120 Separation of 2- and 4-cyano-5-chloroacridines..... 120 VPreparation of 2-bromo-4-cyanobenzoic acid......... 122 Preparation of 5-cyanodiphenylamine-2- carboxylic acid................................. 130 Preparation of 2-cyanoacridone............... 133 Preparation of 2-amidino-5-aminoacridine.......... 135 Preparation of 2-cyanoacridine............... 136 Preparation of 2-chloro-6-nitrotoluene........... 138 Preparation of 3-nitrophthalic anhydride.......... 139 Preparation of 3-chlorophthalic acid * . 140 Preparation of diphenylamine-2,3-dicarboxylic acid... 141 Preparation of 4-carboxyacridone.-................. 142 Syntheses of 3-cyanoacrldines Preparation of 4-aminobenzonitrile 144 I Preparation of 4 -cyanodiphenylamine-2-carboxylic . j acid................. r.... .............. 149 Preparation of 3-cyanoacridone .......... .150,165 Preparation of 3-cyano-5-chloroacridine........... 15(^166 Preparation of 3-amidino-5-aminoacridine.......... 153 Preparation of 3-eyanoacridine.............. 158 Preparation of 3-cyano-5-ethoxyacridine........... 159 Preparation of 2-chloro-5-cyanobenzoic acid. ...... 161 Preparation of 4-cyanodiphenylamino-2-carboxylic acid........................................... 163 Syntheses of 2,6- and 2,8-dicyanoacridines Preparation of 2 -5-dicyanodiphenylamine-2- carboxylic acid............................ 167 Preparation of 2,6- and 2,8-dicyanoacridones. 168 Preparation of 2,6- and 2,8-dicyano-5-chloro- acridines.............................. 169 Separation of 2,6- and 2,8-dicyanoacridones.... 169 Preparation of 2,8-dicyano-5-chloroacridine...... 171 Preparation of 2,8-diamidino-5-aminoacridine 171 * Preparation of 2,6-dicyano-5-chloroacridine...... 173 Preparation of 2-amidino-5-amino-6-cyanoacridine.. 174 Appendix , Preparation of catalysts.................. ..... 175 Drying of solvents........ 1*77 % Summary.......... 179 Bibliography. ......... '......................U 7. * t SOHWV;, INTRODUCTION Representation of the Acridine Molecule The structural formula of acridine was formerly thought to he due to the compound's formation-from diphenylamine and formic acid in the presence of zinc chloride (29). + Zr»Cl x MCOOH >* -n .o -HvO It was shown, however, hy Ramart-Lucas, Grume z and Martynoff (139) that the absorption spectra of acridine in Visible and U.V. light are almost the same as those for anthracene, indicating that the nitrogen atom is spectrographic ally similar to -C=. This, in conjunction with the chemical properties of the molecule has led to the adoption of an anthracene-like structure for the acridine molecule. i In this thesis, however, the following contracted form will represent the acridine molecule:- Nomenc la ture There are two methods of nomenclature of the acridine series in common use at the present time. There is the A 3 system employed in The Ring Index (143) which number^ according to a given set of rules irrespective of the source or components of the system and is used in British publications. This is the system adopted throughout this thesis* 9 10 I In American and German publications the numbering of the acridine system follows that for anthracene which was numbered before the introduction of The Ring Index (143) to emphasize that the reactivity of the 9,10 positions was distinctly different from those at other positions. 5 io 4 Recently, a new system of notation has been proposed by Dyson (51) for all organic compounds. On this system acridine itself is denoted by T.10ZH. Acridone7CQ3 becomes u f•10ZN.9,10H.9EQ., while 5-chloroacridine (British numbering) becomes T.10ZH.9G1 and 3-cyanoacridine becomes T.10ZN.2C.11E3N. Preparation of Acridine Derivatives As the acridine molecule is a chromophore, much attention has been devoted to methods of preparation of acridine derivatives by dyestuffs chemists since the end of last century and in this century by pharmaceutical chemists. Despite this, only a few types of syntheses have been evolved since, in all cases, ring-elosure of the meso-ring (i.e. the central pyridine ring) has had to be effected. / The methods of synthesis can be grouped under three headings:- 1) Prom diphenyl-methane derivatives, 2) From diphenylamine derivatives, 3) Prom benzyl- and benzal- anilines. 1) FROM DIPHENYL-METHANE DERIVATIVES (a) From diamines and aldehydes When an aldehyde is condensed with an amine of the benzene series, there is little tendency for the methylene group to take up the ortho position, the product being almost entirely the para derivative. /X XX R.cho 2.PH.NHZ r — 5 * i- little X/ n h c k m n ' c ' X / R p-cLcrwa.l'lve. p— The simplest method of ensuring that the product shall contain amino -groups ortho to the aldehyde residue is to use a meta diamine (118) . R NH, -/X. C.'V, PK.CHQ t Z H N H , H,N NHj_ H.N X/ NH, 5 By the use of 2-4-diaminotoluene, 3-aminodimethylaniline and many other substituted m-diamines a series of 2-8-substit- uted acridines can readily be obtained (155). Me Me Me HCHO NH. (4W HN NH HH, NH SN (b) From p-substltuted amines and aldehydes If the para position is occupied, the entrant group is forced into the ortho-position and the product can be converted into an acridine (156). Thus Ullman prepared 3-7-dimethyl-5-phenylac ridine Me.^ > ^H x Me Ph.cho^- NH jl HxN / Zi/a sf ieU This method is general and can be used with any para- substituted aromatic amine. The methane base which is formed as an intermediate may be acridinated without the use of zinc chloride by simply heating to 200° with p-toluidine hydrochloride. (e) From o-nitrobenzyl chloride TJllman and Baezner (157) obtained acridines by condensing o-aminobenzyl alcohol with /*-naphthol, resorcinol or diethyl- -m-j CHj^OH + • - vuinerc, X a OM Of N H , ' H O X- ■ X / ’• (d) By oxidation of o-amino-diphenylme thanes or reduction of o -ni t rophenylme thane s. Fischer and Schutte (62) synthesised acridine by oxidation of o-aminodiphenylmethane with lead oxide. NH- The hydroxylated nitrogen compound which may be regarded as an intermediate in the above synthesis is also obtainable by reduction of o-dinit rophenylme thane derivatives. Thus Fischer (63) prepared dihydroacridine. H*. -C. - WO, ■HHOH By using substituted diphenylamines as starting materials many substituted acridines
Recommended publications
  • Photocatalytic Performance of Cuxo/Tio2 Deposited by Hipims on Polyester Under Visible Light Leds: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation
    materials Article Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation Hichem Zeghioud 1 , Aymen Amine Assadi 2,*, Nabila Khellaf 3, Hayet Djelal 4, Abdeltif Amrane 2 and Sami Rtimi 5,* 1 Department of Process Engineering, Faculty of Engineering, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria; [email protected] 2 Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes CEDEX 7, France; [email protected] 3 Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria; [email protected] 4 Ecole des Métiers de l’Environnement, Campus de Ker Lann, 35170 Bruz, France; [email protected] 5 Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-LTP, Station 12, CH-1015 Lausanne, Switzerland * Correspondence: [email protected] (A.A.A.); sami.rtimi@epfl.ch (S.R.) Received: 29 December 2018; Accepted: 22 January 2019; Published: 29 January 2019 Abstract: In the present study, we propose a new photocatalytic interface prepared by high-power impulse magnetron sputtering (HiPIMS), and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light light-emitting diodes (LEDs) illumination. The CuxO/TiO2 nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as the sputtering time of CuxO, the applied current, and the deposition mode (direct current magnetron sputtering, DCMS or HiPIMS).
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Design, Synthesis and Evaluation of Diphenylamines As MEK5 Inhibitors Suravi Chakrabarty
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 2014 Design, Synthesis and Evaluation of Diphenylamines as MEK5 Inhibitors Suravi Chakrabarty Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Chakrabarty, S. (2014). Design, Synthesis and Evaluation of Diphenylamines as MEK5 Inhibitors (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/388 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DESIGN, SYNTHESIS AND EVALUATION OF DIPHENYLAMINES AS MEK5 INHIBITORS A Thesis Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science (Medicinal Chemistry) By Suravi Chakrabarty December 2014 Copyright by Suravi Chakrabarty 2014 DESIGN, SYNTHESIS AND EVALUATION OF DIPHENYLAMINES AS MEK5 INHIBITORS By Suravi Chakrabarty Approved August 7, 2014 ________________________________ ________________________________ Patrick Flaherty, Ph.D. Aleem Gangjee, Ph.D., Chair, Thesis Committee Professor of Medicinal Chemistry Associate Professor of Medicinal Mylan School of Pharmacy Chemistry Distinguished Professor Graduate School Pharmaceutical Sciences Graduate School Pharmaceutical Sciences Duquesne University Duquesne
    [Show full text]
  • (030) EXPLANATION Diphenylamine Was Originally Evaluated in 1969
    155 DIPHENYLAMINE (030) EXPLANATION Diphenylamine was originally evaluated in 1969 and subsequently in 1976, 1979, 1984 and 1998. It was identified for re-evaluation within the CCPR Periodic Review Programme at the 1996 CCPR (ALINORM 97/24), proposed for consideration by the 2000 JMPR at the 1997 CCPR (ALINORM 97/ 24A) and the evaluation deferred until 2001. An ADI of 0-0.08 mg/kg bw was established by the 1998 JMPR replacing the previous ADI of 0-0.02 mg/kg bw. Because of toxicological concerns, attention was given to the various method of synthesising and purifying diphenylamine to produce a quality acceptable for the treatment of apples and pears. It was proposed that a specification for a pure (food grade) diphenylamine should be drawn up. The manufacturer reported new studies of physical and chemical properties, animal, plant and soil degradation, analytical methods, storage stability, farm animal feeding, supervised residue trials and food processing. The governments of Australia and The Netherlands have reported information on national GAP and/or residue data. IDENTITY ISO common name: none Chemical name IUPAC: diphenylamine CA: N-phenylbenzenamine CAS Registry No.: 122-39-4 Synonyms: DPA Structural formula: NH Molecular formula: C12H11N Molecular weight: 169.22 156 diphenylamine PHYSICAL AND CHEMICAL PROPERTIES Pure active ingredient Vapour pressure: 6.39 x 10-4 torr. (=8.52 x 10-2 Pa) at 25°C 2.32 x 10-3 torr. (=3.09 x 10-1 Pa) at 35°C 7.09 x 10-3 torr. (=9.46 x 10-1 Pa) at 45°C (gas saturation method) (Douglass, 1993a) Octanol/water partition coefficient: Kow = 3860, log Kow = 3.6 at 25°C (batch method) (Douglass, 1993b) Solubility (99.4% purity): water at 25°C 0.039 mg/ml acetonitrile at 25°C 860 mg/ml methanol at 25°C 474 mg/ml octanol at 25°C 230 mg/ml hexane at 25°C 57 mg/ml (Schetter, 1993) Hydrolysis (sterile solution) half-life at 25°C pH 5: 320 days (Baur, 1993): pH 7: 350 days pH 9: 360 days (Baur, 1993) Baur demonstrated that diphenylamine was substantially stable to hydrolysis under sterile conditions in the dark at 25°C for 30 days.
    [Show full text]
  • 1.1 10 Oxidation of Alcohols and Aldehydes
    1.1 10 Oxidation of alcohols and aldehydes By the end of this spread, you should be able to … 1Describe the oxidation of primary alcohols to form aldehydes and carboxylic acids. 1Describe the oxidation of secondary alcohols to form ketones. 1Describe the oxidation of aldehydes to form carboxylic acids. Key definition Oxidation of alcohols You will recall from your AS chemistry studies that primary and secondary alcohols can A redox reaction is one in which both reduction and oxidation take place. be oxidised using an oxidising agent. s !SUITABLEOXIDISINGAGENTISASOLUTIONCONTAININGACIDIlEDDICHROMATEIONS + 2− H /Cr2O7 . s 4HEOXIDISINGMIXTURECANBEMADEFROMPOTASSIUMDICHROMATE +2Cr2O7, and sulfuric acid, H2SO. During the reaction, the acidified potassium dichromate changes from orange to green. Remember that tertiary alcohols are not oxidised by acidified dichromate ions. Primary alcohols Primary alcohols can be oxidised to aldehydes and to carboxylic acids (see AS Chemistry spread 2.2.3). H H H O H O Oxidation Oxidation H CCOH H CC H CC H H H H H OH Primary alcohol Aldehyde Carboxylic acid Figure 1 Ethanol oxidised to ethanal, and finally to ethanoic acid The equation for the oxidation of ethanol to the aldehyde ethanal is shown below. Note that the oxidising agent is shown as [O] – this simplifies the equation. CH3CH2OH + [O] }m CH3CHO + H2O When preparing aldehydes in the laboratory, you will need to distil the aldehyde from the reaction mixture as it is formed. This prevents the aldehyde from being oxidised further to a carboxylic acid. Key definition When making the carboxylic acid, the reaction mixture is usually heated under reflux before distilling the product off.
    [Show full text]
  • Annexes Table of Content
    Annexes Table of content Annexes ................................................................................................................... 1 Table of content ........................................................................................................ 1 List of tables ............................................................................................................. 6 List of figures ............................................................................................................ 8 Annex A: Manufacture and uses ................................................................................. 10 A.1. Manufacture, import and export ........................................................................... 10 A.1.1. Manufacture, import and export of textiles and leather ........................................ 10 A.1.2. Estimated volumes on of the chemicals used in textile and leather articles ............. 12 A.2. Uses ................................................................................................................. 13 A.2.1. The use of chemicals in textile and leather processing ......................................... 13 A.2.1.1. Textile processing ................................................................................... 13 A.2.1.2. Leather processing ................................................................................. 19 A.2.1.3. Textile and leather formulations ............................................................... 20 A.2.1.4. Chemicals used in
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Preparation Date: 06/23/2015 Revision Date: 10/27/2015 Revision Number: G2 1. IDENTIFICATION Product identifier Product code: P1282 Product Name: POTASSIUM DICHROMATE, CRYSTAL, REAGENT, ACS Other means of identification Synonyms: Bichromate of potash Chromium potassium oxide (K2Cr2O7) Dichromic acid dipotassium salt Dipotassium bichromate Dipotassium dichromate Dipotassium dichromium heptaoxide Iopezite Kaliumdichromat [German] Potassium bichromate Potassium chromate (K2Cr2O7) Potassium dichromate Potassium dichromate (K2(Cr2O7)) Potassium dichromate (K2Cr2O7) Potassium dichromate(VI) SRM 935a CAS #: 7778-50-9 RTECS # HX7680000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Analytical reagent. In tanning, printing, painting, electroplating and pyrotechnics. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Product code: P1282 Product name: POTASSIUM 1 / 16 DICHROMATE, CRYSTAL, REAGENT, ACS Acute toxicity - Oral Category 2 Acute toxicity - Dermal Category 1 Acute toxicity - Inhalation (Gases) Category 2 Acute toxicity - Inhalation (Dusts/Mists) Category 2 Skin
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Manufacturing of Potassium Permanganate Kmno4  This Is the Most Important and Well Known Salt of Permanganic Acid
    Manufacturing of Potassium Permanganate KMnO4 This is the most important and well known salt of permanganic acid. It is prepared from the pyrolusite ore. It is prepared by fusing pyrolusite ore either with KOH or K2CO3 in presence of atmospheric oxygen or any other oxidising agent such as KNO3. The mass turns green with the formation of potassium manganate, K2MnO4. 2MnO2 + 4KOH + O2 →2K2MnO4 + 2H2O 2MnO2 + 2K2CO3 + O2 →2K2MnO4 + 2CO2 The fused mass is extracted with water. The solution is now treated with a current of chlorine or ozone or carbon dioxide to convert manganate into permanganate. 2K2MnO4 + Cl2 → 2KMnO4 + 2KCl 2K2MnO4 + H2O + O3 → 2KMnO4 + 2KOH + O2 3K2MnO4 + 2CO2 → 2KMnO4 + MnO2 + 2K2CO3 Now-a-days, the conversion is done electrolytically. It is electrolysed between iron cathode and nickel anode. Dilute alkali solution is taken in the cathodic compartment and potassium manganate solution is taken in the anodic compartment. Both the compartments are separated by a diaphragm. On passing current, the oxygen evolved at anode oxidises manganate into permanganate. At anode: 2K2MnO4 + H2O + O → 2KMnO4 + 2KOH 2- - - MnO4 → MnO4 + e + - At cathode: 2H + 2e → H2 Properties: It is purple coloured crystalline compound. It is fairly soluble in water. When heated alone or with an alkali, it decomposes evolving oxygen. 2KMnO4 → K2MnO4 + MnO2 + O2 4KMnO4 + 4KOH → 4K2MnO4 + 2H2O + O2 On treatment with conc. H2SO4, it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating. 2KMnO4+3H2SO4 → 2KHSO4 + (MnO3)2SO4 + 2H2O (MnO3)2SO4 + H2O → Mn2O7 + H2SO4 Mn2O7 → 2MnO2 + 3/2O2 Potassium permanganate is a powerful oxidising agent. A mixture of sulphur, charcoal and KMnO4 forms an explosive powder.
    [Show full text]
  • Chemical Compatibility Guide
    Chemical Compatibility Guide Guide Applicable to the Following: PIG Portable Spill Containment Pool Guide Information This report is offered as a guide and was developed from information which, to the best of New Pig’s knowledge, was reliable and accurate. Due to variables and conditions of application beyond New Pig’s control, none of the data shown in this guide is to be construed as a guarantee, expressed or implied. New Pig assumes no responsibility, obligation, or liability in conjunction with the use or misuse of the information. PIG Spill Containment Pools are constructed from PVC-coated polyester fabric. The chemical resistance guide that follows shows the chemical resistance for the PVC layer only. This guide has been compiled to provide the user with general chemical resistance information. It does not reflect actual product testing. Ratings / Key or Ratings – Chemical Effect 1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C) A = Excellent D = Severe Effect, not recommended for ANY use. B = Good — Minor Effect, slight corrosion or discoloration. N/A = Information not available. C = Fair — Moderate Effect, not recommended for continuous use. Softening, loss of strength, swelling may occur. Due to variables and conditions beyond our control, New Pig cannot guarantee that this product(s) will work to your satisfaction. To ensure effectiveness and your safety, we recommend that you conduct compatibility and absorption testing of your chemicals with this product prior to purchase. For additional questions or information,
    [Show full text]
  • Perkin's Mauve: the History of the Chemistry
    REFLECTIONS Perkin’s Mauve: The History of the Chemistry Andrew Filarowski Those of us who owe our living in part to the global dyestuff and chemical industry should pause today and remember the beginnings of this giant industry which started 150 years ago today with William Perkins’ discovery of mauveine whilst working in his home laboratory during the Easter holiday on April 28, 1856. Prior to this discovery, all textiles were dyed with natural dyestuffs and pigments. What did Perkin’s Reaction Entail? William Henry Perkin carried out his experiments at his home laboratory in the Easter break of 1856. He was trying to produce quinine (C20H24N2O2). This formula was known but not the structural formula. Because chemistry was in such an early stage of development Perkin thought that by simply balancing the masses (simple additive and subtractive chemistry) in an equation he would obtain the required compound. He therefore believed that if he took two allyltoluidine molecules, C10H13N, and oxidised them with three oxygen atoms (using potassium dichromate) he would get quinine (C20H24N2O2) and water. 2 (C10H13N) + 3O C20H24N2O2 + H2O It is unsurprising to us now but Perkin reported “that no quinine was formed, but only a dirty reddish brown precipitate.” However, he continued in his trials and decided to use aniline (C6H5NH2) and its sulphate, and to oxidise them using potassium dichromate. This produced a black precipitate that Perkin at first took to be a failed experiment, but he noticed on cleaning his equipment with alcohol that a coloured solution was obtained. Perkin’s Patent W H Perkin filed his patent on the 26th August 1856 for “Producing a new colouring matter for the dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials.” (sic) Patent No.
    [Show full text]
  • Reactions of Alcohols & Ethers 1
    REACTIONS OF ALCOHOLS & ETHERS 1. Combustion (Extreme Oxidation) alcohol + oxygen carbon dioxide + water 2 CH3CH2OH + 6 O2 4 CO2 + 6 H2O 2. Elimination (Dehydration) ° alcohol H 2 S O 4/ 1 0 0 C alkene + water H2SO4/100 ° C CH3CH2CH2OH CH3CH=CH2 + H2O 3. Condensation ° excess alcohol H 2 S O 4 / 1 4 0 C ether + water H2SO4/140 ° C 2 CH3CH2OH CH3CH2OCH2CH3 + H2O 4. Substitution Lucas Reagent alcohol + hydrogen halide Z n C l2 alkyl halide + water ZnCl2 CH3CH2OH + HCl CH3CH2Cl + H2O • This reaction with the Lucas Reagent (ZnCl2) is a qualitative test for the different types of alcohols because the rate of the reaction differs greatly for a primary, secondary and tertiary alcohol. • The difference in rates is due to the solubility of the resulting alkyl halides • Tertiary Alcohol→ turns cloudy immediately (the alkyl halide is not soluble in water and precipitates out) • Secondary Alcohol → turns cloudy after 5 minutes • Primary Alcohol → takes much longer than 5 minutes to turn cloudy 5. Oxidation • Uses an oxidizing agent such as potassium permanganate (KMnO4) or potassium dichromate (K2Cr2O7). • This reaction can also be used as a qualitative test for the different types of alcohols because there is a distinct colour change. dichromate → chromium 3+ (orange) → (green) permanganate → manganese (IV) oxide (purple) → (brown) Tertiary Alcohol not oxidized under normal conditions CH3 KMnO4 H3C C OH NO REACTION K2Cr2O7 CH3 tertbutyl alcohol Secondary Alcohol ketone + hydrogen ions H O KMnO4 H3C C CH3 + K2Cr2O7 C + 2 H H3C CH3 OH propanone 2-propanol Primary Alcohol aldehyde + water carboxylic acid + hydrogen ions O KMnO4 O H H KMnO H H 4 + CH3CH2CH2OH C C C H C C C H + 2 H K2Cr2O7 + H2O K Cr O H H H 2 2 7 HO H H 1-propanol propanal propanoic acid 6.
    [Show full text]