25 Oomycete Diseases

Total Page:16

File Type:pdf, Size:1020Kb

25 Oomycete Diseases 25 Oomycete Diseases Katherine J. Hayden,1* Giles E.St.J. Hardy2 and Matteo Garbelotto1 1University of California, Berkeley, California, USA; 2Murdoch University, Murdoch, Western Australia 25.1 Pathogens, Significance in part by the extreme generalist Phytophthora and Distribution cinnamomi Rands (Crandall et al., 1945; Anagnostakis, 1995). P. cinnamomi is notori- The most important oomycete forest patho- ous for the massive mortality it has caused gens comprise two genera: Pythium and the in jarrah (Eucalyptus marginata Donn ex Sm.) formidable genus Phytophthora, whose name forests in Western Australia, where it was appropriately means ‘plant destroyer’. Pythium first observed in the 1920s (Podger, 1972). spp. cause seed and root rots and damping- P. cinnamomi causes root disease in agricultural off diseases that thwart seedling establish- and forest systems worldwide with varying ment, and have been implicated in helping degrees of virulence, but as Phytophthora to drive forest diversity patterns through dieback it has been seen to kill 50–75% of increased disease pressures on seedlings clos- the species in sites in Western Australia, in est to their mother tree (Janzen, 1970; Connell, some cases leaving every tree and much of 1971). In contrast, Phytophthora spp. can cause the understorey dead (Weste, 2003). Shearer disease at every life stage of forest trees, from et al. (2004) estimate that of the 5710 described root to crown, and from trunk cankers to plant species in the South West Botanical foliar blights (Erwin and Ribeiro, 1996). They Province of Western Australia, approximately are remarkably flexible and effective patho- 2300 species are susceptible, of which 800 of gens with an unusual genetic architecture these are highly susceptible. that may favour the rapid evolution of patho- More recently, the trunk canker caused genicity (Jiang et al., 2008; Raffaele et al., 2010; by Phytophthora ramorum Werres, De Cock & Seidl et al., 2011). Outbreaks of disease caused Man in’t Veld has caused a devastating die-off by Phytophthora spp. (especially when they of oaks (Quercus spp.) and tanoak (Lithocarpus have been introduced to new systems) have densiflorus (Hook. & Arn.) Rehder) in western been documented with dramatic, and some- North America (Rizzo and Garbelotto, 2003), times disastrous, effects since the mid 1800s. spreading from a relatively minor foliar blight European and North American chestnuts of ornamentals in nurseries to a fatal scourge (Castanea spp.) began dramatic declines in US wildlands and UK gardens. In contrast from chestnut ink disease, a root rot caused to P. cinnamomi, which is a root pathogen * E-mail: [email protected] 518 ©CAB International 2013. Infectious Forest Diseases (eds P. Gonthier and G. Nicolotti) GGonthier_Ch25.inddonthier_Ch25.indd 551818 22/4/2013/4/2013 11:21:19:21:19 PPMM Oomycete Diseases 519 transmitted by soil and water, infection by strong evidence that P. cinnamomi is unable to and transmission of P. ramorum occur prima- survive saprophytically in the absence of host rily above ground. While the two species plants. In dry conditions, it persists in the have much in common, e.g. extremely broad hardpan layer, where deep lateral roots may host ranges and disastrous consequen ces be in contact with free water even when the of introduction on native ecosystems, their surface soil is dry (Shea et al., 1983; Kinal et al., contrasting modes of transmission span the 1993; Shearer et al., 2010). It favours warmer range for oomycete pathogens. Here, we treat temperatures than most Phytophthora spp., these two species and the extensive literature but has a wide range of conducive tempera- surrounding them as case studies for oomyc- tures, facilitating its worldwide distribution. ete diseases and their management. P. ramorum is the cause of sudden oak A great many more species of Phytophthora death trunk canker, ramorum blight and die- have an impact on forest systems, and new back, and is distributed in nurseries in the species are discovered almost yearly. Most of western USA, western Canada and through- these are likely to have been established for out Europe. It is present in gardens in the UK some time (even if they are relatively recent and wildlands in the USA. Diseases caused introductions), but have only just noticed by P. ramorum emerged in the mid 1990s as because of increased sampling and new foliar and twig blight of nursery ornamentals molecular tools (Jung et al., 2002, 2011; Hansen in Europe (Werres et al., 2001), and as fatal et al., 2003; Balci et al., 2008; Burgess et al., canker disease of oaks and tanoaks in a 300 km 2009; Scott et al., 2009). Others are entirely stretch of the California coast (Rizzo et al., new, however, notably a novel Phytophthora 2002). The twig and foliar blight infects species complex that has begun to decimate hosts in nearly every plant family, and is the alders (Alnus spp.) in Europe (Brasier et al., primary source of inoculum even in the US 1995, 1999). In addition to the more detailed epidemic (Garbelotto et al., 2002). The canker descriptions of P. cinnamomi and P. ramorum, form in true oaks has not been documented to we briefly describe a selection of those spe- contribute to pathogen spread, but tanoaks cies currently known to have the greatest are distinctly susceptible to both the sporulat- impacts on forest systems. For a more com- ing foliar and twig disease and the fatal plete description of the biology and disease canker (Davidson et al., 2008). The disease has control of older Phytophthora spp., refer to been responsible for the deaths of hundreds Erwin and Ribeiro (1996). of thousands, if not millions of oaks and P. cinnamomi has a worldwide distribu- tanoaks (Plate 30), the near extirpation in tion, and is the cause of Phytophthora root tanoak in some parts of its range, and millions and collar rot (synonyms: ink disease of of US dollars incurred in costs due to quaran- hardwoods, Phytophthora dieback, littleleaf tine and the monitoring of nurseries. disease of pines, stripe canker of cinnamon). Pythium spp. (e.g. P. debaryanum R. Hesse, P. cinnamomi was confirmed as a cause of P. irregulare Buisman, P. ultimum Trow) are ink disease, along with P. cambivora (Petri) distributed worldwide, are root pathogens Buisman in Europe, in the early 1900s (Day, and a major cause of seed rots and damping- 1938), and as the cause of ‘jarrah dieback’ in off diseases. These diseases are a major cause 1965 (Podger et al., 1965; Podger, 1972). The of seedling mortality, and have long been pathogen causes root rots on a huge number thought to help drive diversity in tropical for- of species (Hardham, 2005). Disease severity ests through density-dependent mortality ranges from asymptomatic to fatal, depend- (Augspurger, 1984; Bell et al., 2006). They have ing on the host and environmental conditions, also been documented in temperate systems with among the worst observed in the jarrah (Packer and Clay, 2000, 2003). See Gilbert ‘graveyards’ of Western Australia. It has been (2002) for a review of the role and limitations documented to live saprophytically, and to of pathogens as natural enemies in driving persist in moist soil for as long as 6 years forest diversity, as proposed by Janzen (1970) (Zentmyer and Mircetich, 1966). However, and Connell (1971). Put simply, the Janzen– the work of McCarren et al. (2005) provides Connell hypothesis posits density-dependent GGonthier_Ch25.inddonthier_Ch25.indd 551919 22/4/2013/4/2013 11:21:19:21:19 PPMM 520 K.J. Hayden et al. feedback, wherein the highest density of Phytophthora cactorum (Lebert & Cohn) seeds and their pathogens or other natural J. Schröt. is globally distributed and causes enemies will both occur close to a parent tree. disease on a wide range of species, from forest Seeds may have to travel some distance to trees to ornamentals. It has been associated escape their enemies, thus helping to drive with canker diseases on maple (Acer spp.) forest diversity. (Caroselli and Howard, 1939; Erwin and For forest managers, seed rots and Ribeiro, 1996), beech (Jung et al., 2006), horse damping-off diseases are a hindrance to re- chestnut (Aesculus hippocastanum L.) (Brasier seeding efforts, and may inspire the use of and Strouts, 1976) and white poplar (Populus nursery-grown seedlings rather than starting alba L.) (Cerny et al., 2008), and with declining new trees from seed, bringing with them the oaks in Europe (Jung et al., 1996); it has long potential to spread nursery diseases into been associated with root rots of conifers. wildlands. Pythium spp. have been impli- Phytophthora cambivora has a world- cated in the decline of spruce (Picea spp.) and wide distribution and, as already noted, is beech (Fagus spp.) in Bavaria (Nechwatal and co-implicated with P. cinnamomi as the cause Osswald, 2001), the decline of Spanish oaks of ink disease of chestnut in Europe, both in (Romero et al., 2007), and as contributing its historic form, dating to before 1800 (Day, to growth reductions of Scots pine (Pinus 1938; Crandall et al., 1945), and in its recent sylvestis L.) in Scotland, especially when resurgence (Vettraino et al., 2001, 2005). The mixed with P. cinnamomi or Fusarium spp. infection spreads from roots into the collar (Chavarriaga et al., 2007). Features of the of the tree, and frequently causes death within P. ultimum genome sequence are consistent 2 years. The disease may also move more with its status as a necrotroph and generalist slowly, and cause the slow decline of the pathogen of seedlings; it lacks cutinases to crown, followed by death within several break down plant cuticles, lacks xylanase to years (Day, 1938). Ink disease is characterized digest complex polysaccharides, and does by a black exudate from a lesion that spreads not have the RXLR effectors (effector pro- upwards from the soil.
Recommended publications
  • The Origin and Distribution of Phytophthora Cinnamomi
    THE ORIGIN AND DISTRIBUTION OF PHYTOPHTHORA CINNAMOMI RANDS IN AUSTRALIAN NATIVE PLANT COMMUNITIES AND THE SIGNIFICANCE OF ITS ASSOCIATION WITH PARTICULAR PLANT SPECIES By B. H. PRATT* and W. A. HEATHER* [Manuscript received 23 October 1972] Abstract The origin, distribution, and disease association of P. cinnamomi in native plant communities in Australia has been examined. The fungus was isolated from the root zones of 31 plant genera in 16 families and is widespread throughout eastern and southern Australia and south-western Western Australia. Although the fungus is associated with disease in native plant communities it is also present in apparently non-diseased communities. Disease occurs usually only in environments disturbed by man, probably as a result of increase in population or activity of pre-existing fungal populations. The widespread distribution of P. cinnamomi in native vegetation in Australia, its occurrence in remote, undisturbed areas, and the apparent balance it has achieved with plant species of differing susceptibility to disease in some natural, undisturbed areas suggests that the fungus is likely to be indigenous to eastern Australia. Further, it may be partly responsible for the localized distribution of some plant species. I. INTRODUCTION The soil-borne fungus Phytophthora cinnamomi Rands is widely distributed in Australia, in horticultural plantings (Zentmyer and Thorn 1967; Pratt and Wrigley 1970; as well as personal communications from the New South Wales Department of Agriculture, Tasmanian Department of Agriculture, Victorian Department of Agriculture, and the Queensland Department of Primary Industries), and in conifer nurseries and plantings (Oxenham and Winks 1963; Bertus 1968; and personal communications from the New South Wales Forestry Commission, and the Queens­ land Department of Forestry).
    [Show full text]
  • The Interaction of Drought and the Outbreak of Phoracantha
    The interaction of drought and the outbreak of Phoracantha semipunctata (Coleoptera: Cerambycidae) on tree collapse in the Northern Jarrah (Eucalyptus marginata) forest. by Stephen Seaton (BSc Environmental Science) This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Science (Honours) School of Biological Sciences and Biotechnology, Murdoch University, Perth, Western Australia November 2012 ii Declaration I declare that that the work contained within this thesis is an account of my own research, except where work by others published or unpublished is noted, while I was enrolled in the Bachelor of Science with Honours degree at Murdoch University, Western Australia. This work has not been previously submitted for a degree at any institution. Stephen Seaton November 2012 iii Conference Presentations Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Drought induced tree collapse and the outbreak of Phoracantha semipunctata poses a risk for forest under climate change. Abstract presented at the Combined Biological Sciences Meeting (CBSM) 2012, 24th of August. University Club, University of Western Australia. Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Occurrence of Eucalyptus longicorn borer (Phoracantha semipunctata) in the Northern Jarrah Forest following severe drought. To be presented at The Australian Entomological Society - 43rd AGM & Scientific Conference and Australasian Arachnological Society - 2012 Conference. 25th – 28th November. The Old Woolstore, Hobart. iv Acknowledgments I greatly appreciate the guidance, enthusiasm and encouragement and tireless support from my supervisors Dr George Matusick and Prof Giles Hardy in the Centre of Excellence for Climate Change Forests and Woodland Health. I particularly appreciate the interaction and productive discussions regarding forest ecology and entomology and proof reading the manuscript.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • Taro Leaf Blight
    Plant Disease July 2011 PD-71 Taro Leaf Blight in Hawai‘i Scot Nelson,1 Fred Brooks,1 and Glenn Teves2 1Department of Plant and Environmental Protection Sciences, Honolulu, HI 2 Department of Tropical Plant and Soil Sciences, Moloka‘i Extension Office, Ho‘olehua, HI aro (Colocasia es- ha (2.8 US tons/acre) Tculenta (L.) Schott) (FAOSTAT 2010 esti- grows in Hawai‘i and mates; Ramanatha et throughout the tropical al. 2010). Pacific as an edible In 2009, approx- aroid of historical and imately 1814 tonnes contemporary signifi- (2,000 US tons) of C. cance (Figure 1). Farmers esculenta were har- cultivate kalo (Hawaiian vested in Hawai‘i from for taro) in wet lowland 100 farms on 180 ha (Figure 2) or dryland (445 acres). More than (Figure 3) taro patches 80% of Hawai‘i’s pres- for its starchy, nutritious ent-day taro production corms. The heart-shaped occurs on the island of leaves are edible and Kaua‘i. The farm value can also serve as food Figure 1. A taro (Colocasia esculenta) patch in Hawai‘i. of Hawai‘i’s taro crop wrappings. Historically, in 2009 exceeded $2.4 taro crops provided nutritious food that helped early million (United States Department of Agriculture Polynesians to successfully colonize the Hawaiian 2011). Processors use mature corms of Hawaiian Islands. cultivars to make poi by steaming and macerating “Taro” refers to plants in one of four genera the taro. Cultivars processed into poi commercially within the family Araceae: Colocasia, Xanthosoma, are predominantly ‘Lehua’ types, and to a lesser Alocasia, and Cyrtosperma.
    [Show full text]
  • Cultivar Resistance to Taro Leaf Blight Disease in American Samoa
    Technical Report No. 34 Cultivar Resistance to Taro Leaf Blight Disease in American Samoa Fred E. Brooks, Plant Pathologist 49 grow poorly under severe blight conditions, their ABSTRACT reduced height and leaf surface should not raise the level of spores in the field enough to threaten A taro leaf blight (TLB) epidemic struck cultivar resistance. Further, American Samoans American Samoa and (Western) Samoa in 1993- are accepting the taste and texture of the new 1994, almost eliminating commercial and cultivars and planting local taro appears to have subsistence taro production (Colocasia declined. esculenta). In 1997, leaf blight-resistant cultivars from Micronesia were introduced into American Samoa. Some farmers, however, still try to raise INTRODUCTION severely diseased local cultivars among the resistant taro. This practice may increase the Taro has been a sustainable crop and dietary number of fungus spores in the field produced staple in the Pacific Islands for thousands of years by Phytophthora colocasiae and endanger plant (Ferentinos 1993). In American Samoa, it is resistance. The objective of this study was to grown on most family properties and is an determine the effect of interplanting resistant and important part of Fa’a Samoa traditional susceptible taro cultivars on TLB resistance and Samoan culture. Local production of taro, yield. Two resistant cultivars from the Republic Colocasia esculenta (L.) Schott, was devastated of Palau, P16 (Meltalt) and P20 (Dirratengadik), by an epidemic of taro leaf blight (TLB) in late were planted in separate plots and interplanted 1993-1994 (Trujillo et al. 1997). Taro production with Rota (Antiguo), a cultivar assumed to be fell from 357,000 kg (786,000 lb) per year before susceptible to TLB.
    [Show full text]
  • Can Phytophthora Quercina Have a Negative Impact on Mature Pedunculate Oaks Under Field Conditions? Ulrika Jönsson-Belyazio, Ulrika Rosengren
    Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Ulrika Jönsson-Belyazio, Ulrika Rosengren To cite this version: Ulrika Jönsson-Belyazio, Ulrika Rosengren. Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions?. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2006, 63 (7), pp.661-672. hal-00884017 HAL Id: hal-00884017 https://hal.archives-ouvertes.fr/hal-00884017 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 63 (2006) 661–672 661 c INRA, EDP Sciences, 2006 DOI: 10.1051/forest:2006047 Original article Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Ulrika J¨ -B*, Ulrika R Plant Ecology and Systematics, Department of Ecology, Ecology Building, Lund University, 223 62 Lund, Sweden (Received 26 September 2005; accepted 10 March 2006) Abstract – Ten oak stands in southern Sweden were investigated to evaluate the impact of the root pathogen Phytophthora quercina on mature oaks under field conditions. Phytophthora quercina was present in five of the stands, while the other five stands were used as controls to verify the effect of the pathogen.
    [Show full text]
  • Presidio Phytophthora Management Recommendations
    2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora
    [Show full text]
  • Final Report for Project PG0102 Ramorum 060911
    Measuring the economic, environmental and ecosystem services value of herita ge gardens, heathland and woodland in the context of determining potential impacts from the regulated plant pathogens Phytophthora ramorum and Phytopthora kernoviae Prepared for: Defra Prepared by: ADAS UK Ltd in conjunction with CJC Consulting, Fera, and the London School of Economics Date: 17th June 2011 0936648 Project FFG0921: TEV at risk from P. ramorum and P. kernoviae Acknowledgements The project team would like to thank the time, effort and support provided by the Defra economists, Phil Cryle, Adam Bell, Meredith Ward and internal reviewers as well as the team at Fera including Alan Inman, Keith Walters, Claire Sansford, and Judith Turner. For assistance and provision of information to: Bruce Rothnie, Jennifer Mcvey, Pat Snowdon, Olly Stephenson, Justin Gilbert, Shona Cameron and Mark Broadmeadow (Forestry Commission), Suzanne Perry and Keith Kirby (Natural England) and Ian Wright (National Trust). Project team: Glyn Jones, Ben Drake (ADAS) – lead authors and contact Nigel Boatman, John Hughes, Kate Somerwill (Fera) Bob Crabtree (CJC Consulting) Susana Mourato (London School of Economics) Project FFG0921: TEV at risk from P. ramorum and P. kernoviae Executive summary Introduction The main aim of this research is to provide estimates of the total value to society of heritage gardens, heathland and woodland which may be under threat from impacts from Phytophthora ramorum (P. ramorum) and Phytophthora kernoviae (P. kernoviae) . The estimates provide an update to the figures used in the 2008 Impact Assessment. Background P. ramorum and P. kernoviae are exotic plant pathogens that have only recently been described in the last decade.
    [Show full text]
  • Phytophthora Magnolia Phosphonate Poster ICPP Aug 08
    Steps towards integrated management of Forest Research Phytophthora kernoviae and P. ramorum on magnolias in British heritage gardens Sandra Denman, Susan Kirk and Alistair Whybrow Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK. Introduction Phytophthora kernoviae (Pk) and P. ramorum (Pr) are newly invasive Phytophthora species in Britain causing disfigurement and death of ornamental plants and trees in nurseries, native woodlands and gardens (Figures 1 and 2). Many of the gardens have heritage value and house collections of rare and exotic plants (e.g. the ‘National Magnolia Collection’). These serve as an important genetic resource but the gardens are also a significant source of tourist revenue. Some of the plant species that form the essential character of the gardens are primary foliar hosts for Pr and Pk and produce Figure 1. Shoot tip dieback and Figure 2. Bleeding stem lesions abundant inoculum when infected (e.g. rhododendrons, magnolia and pieris). Infected foliage leaf necrosis of R ponticum. on Fagus sylvatica. of these showcase plants is not only disfiguring but may be subjected to plant health measures of Route to determining whether infected deciduous magnolias can be freed from disease removal and destruction. By preventing new leaf infections and controlling existing ones, inoculum (1) Is the disease cycle broken over winter Yes No production and spread to trees and other plants is reduced. (2a) Has the main external source of (2b) Is the pathogen systemic inoculum been removed (e.g. rhododendron) (i.e. in the vascular system) No Do not progress Yes No until the answer is Yes To find out if some of these valuable plants could be ‘cured’ of established infections, aff ected Yes The plant will (3bi) Determine where the most probably pathogen overwinters/stays have to be latent in winter magnolias at two National Trust gardens were selected for study.
    [Show full text]
  • Syngenta's Citrus Soil Assay for Phytophthora
    Photo Taken by: Kendra McCorkle Syngenta’s Citrus Soil Assay for Phytophthora Kendra McCorkle Last Updated: 10/02/16 Contents ● My Background ● Topic selection ● Module Contents ● Value of the learning module ● Acknowledgements ● Questions Photo Taken by: Kevin Langdon, Syngenta Background Information-Personal ● Florida Native - Reside on FL’s East coast ● Family in the citrus industry Photo Taken by: Kendra McCorkle Photo Taken by: Kathy Thomason http://indian-river.fl.us/citrus/district_map.gif Background Information-Personal Background Information- Professional ● Indian River State College (2008-2010) - A.A. Environmental Science ● Syngenta Internships - Summers of 2009, 2010, 2011, 2012 ● University of Florida (2010-2012) - B.S. Environmental Management - Minor Soil and Water Science ● Syngenta Crop Protection - R&D Specialist (2012) ● Iowa State University (2014-2016) - M.S. Agronomy Topic selection ● Syngenta invested in my degree ● Current role entails fungicide efficacy trials - Another research project? ● Passionate about citrus ● Topic: Syngenta’s Citrus Soil Assay program - Important piece of my history Why a learning module? ● Create a training document for Syngenta - Basic introduction to the program - Used for internal and external customers Photos Taken by: Kendra McCorkle Module Contents ● Florida citrus ● Major diseases in Florida citrus ● Citrus Phytophthora ● Citrus greening ● Phytophthora and citrus greening interaction ● Syngenta’s citrus soil assay Photo Taken by: Kendra McCorkle Florida Citrus ● 500,000 total acres of citrus in FL - 453,000 acres of oranges (~90% of total) - 46,000 acres of grapefruit (~10% of total) ● Generates $9 billion for FL economy (Florida Citrus Mutual, 2012) Photo Taken by: Kendra McCorkle ● Florida provides 80% of the orange juice produced in the U.S.
    [Show full text]
  • Soil- and Waterborne Phytophthora Species Linked to Recent
    REVIEW ARTICLE Soil- and waterborne Phytophthora species linked to recent outbreaks in Northern California restoration sites A review identifies several Phytophthora species found in California wildlands and discusses approaches for preventing and diagnosing the spread of these plant pathogens. by Matteo Garbelotto, Susan J. Frankel and Bruno Scanu istorically, the release of Phytophthora species Abstract in the wild has resulted in massive die-offs of Himportant native plant species, with cascading Many studies around the globe have identified plant production facilities consequences on the health and productivity of affected as major sources of plant pathogens that may be released in the wild, ecosystems (Brasier et al. 2004; Hansen 2000; Jung with significant consequences for the health and integrity of natural 2009; Lowe 2000; Rizzo and Garbelotto 2003; Swiecki ecosystems. Recently, a large number of soilborne and waterborne et al. 2003; Weste and Marks 1987). Once introduced, species belonging to the plant pathogenic genus Phytophthora have plant pathogens in general cannot be eradicated (Cun- been identified for the first time in California native plant production niffe et al. 2016; Garbelotto 2008), and costs associated facilities, including those focused on the production of plant stock used with the spread and control of exotic pathogens and in ecological restoration efforts. Additionally, the same Phytophthora pests have been estimated to surpass $100 billion per species present in production facilities have often been identified in failing year for the United States alone (Pimentel et al. 2005). restoration projects, further endangering plant species already threatened Thus, preventing the introduction of pathogens by us- or endangered. To our knowledge, the identification of Phytophthora ing pathogen-free plant stock is the most cost-effective species in restoration areas and in plant production facilities that produce and responsible approach (Parnell et al.
    [Show full text]