<<

Educational Workshop EW03: Optimising therapy - bridging laboratory and clinical expertise

Arranged with EFISG

Convenors: Manuel Cuenca-Estrella, Madrid, ES Johan Maertens, Leuven, BE

Faculty: Oliver A. Cornely, Cologne, DE Joseph Meletiadis, Athens, GR Maiken C. Arendrup, Copenhagen, DK Sevtap Arikan-Akdagli, Ankara, TR

Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Can we start or stop antifungal therapy based on biomarkers detection?

Prof. Oliver A. Cornely MD, FACP, FIDSA, FAAM

Chair, Translational Research Institute Chair, Centre for Clinical Trials Deputy Head, Infectious Diseases University of Cologne

Transparency Declaration

• European Commission FP7, IMI-JU 6 (COMBACTE), 8 (APC), 9 (CARE) • European Organisation for Research and Treatment of Cancer (EORTC) • European Society for Clinical Microbiology and Infectious Diseases (ESCMID) • European Confederation of Medical Mycology (ECMM) • German Federal Ministry of Research and Education BMBF 01KN1106, 01KN0706, 01GH1001E, 01EZ0931, 01EK1422 • German Center for Infection Research (DZIF) • German Research Foundation (DFG) • German José Carreras Leukaemia Foundation (DJCLS) • SME & Industry Research Grants, Trial Design, or Presenting for 3M, Actelion, Astellas, AstraZeneca, Basilea, Bayer, Celgene, Cidara, Da Volterra, Daiichi Sankyo, F2G, Genentech, Genzyme, Gilead, GSK, Medpace, Merck Serono, MSD, Miltenyi, NanoMR, Novartis, Parexel, Pfizer, Quintiles, Rempex, Roche, Sanofi Pasteur, Shionogi, Summit, Vifor, Viropharma

Antifungal Strategies

Strategy Definition Prophylaxis Administration of the antifungal agent is initiated at a period of high risk of infection to prevent fungal infections Empirical Initiation or modification of an existing antifungal regimen in Treatment persistently febrile patients with neutropenia (generallyFever 4–7 days in duration) that is without a known sourcedriven and is unresponsive to appropriate antibacterial agents Pre-Emptive Similar to empirical antifungal therapy, preemptive therapy Therapy aims to treat a suspected early IFI but uses radiologic studies, laboratory markers, or both (rather than fever alone) to stratify the likelihood of an IFI; meetingDiagnosis prespecified criteria would trigger preemptive initiation or modificationdriven of antifungal therapy

Treatment of Corresponds to patients who meet European Organization established IFI for Research and Treatment of Cancer/Mycoses Study Group criteria for proven and probable IFI

Segal BH et al. Clin Inf Dis 2007; 44: 402–9. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

2 Biomarkers – 2 Fungi – 2 Decisions

Start Stop Start Stop

Candidiasis N/A N/A BDG BDG

Aspergillosis GM GM BDG BDG

You May Have Seen This Patient

• Patient ventilated, Pip/Tazo Day 6, persistent fever, otherwise stable, no pathogen isolated • ICU rounds twice daily, continuous discussion pro/con empiric antifungal treatment

• The right decision: Depends …

• Did the patient undergo abdominal surgery ? • Is the patient colonised ?

Treatment Delays Increase Mortality in IC Hospital mortality [%]

[hours]

Morrell M et al. Antimicrob Agents Chemother 2005; 49:3640–3645. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Early Exposure to is a Common Pattern of all Trials Improving Survival Rates

Trials That Yielded a Difference in Survival

Prophylaxis Pre-emptive w/o microbiology

Prophylaxis

Empiric Treatment

Reliable Diagnostic Tests would Allow Early Treatment to be Targeted Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Diagnostic Challenges

Diagnostic tools are too few and are unreliable  „One fungus – one name“ we welcome  „One fungus – one test“ is no ! solution  Aspergillus – GM: 10 years to a cut-off  Aspergillus – PCR: 15 years to standardization All rely on the same  Mannan/Anti-Mannan: Any good at all? principle!  ß-D-Glucan: Benefits not yet fully explored

Give up the paradigm of proving the presence of the pathogen?

Galactomannan

Starting with Positive GM

-AML - Neutropenia - Fever >72h - Cough - Dyspnea - Pleuritis

Galactomannan

• • •

• 1.0 • • • • • A typical AmBiLoad Study Patient from Cologne. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Blood galactomannan

Population Intention Intervention SoR QoE Comment Prolonged neutropenic To diagnose Galactomannan A I Highest test accuracy patients and allogeneic invasive in blood requiring 2 consecutive stem cell aspergillosis samples with an OD index transplantation ≥0.5; recipients not on mold‐ prospective monitoring active prophylaxis Draw samples C III should be combined with every 3‐4 days HRCT and clinical evaluation Patients with a To diagnose Galactomannan Significant lower sensitivity hematological invasive in blood in non‐neutropenic patients malignancy aspergillosis

•Neutropenic A II •Non‐Neutropenic B II

Morrissey 2013, Springer 2013, Leeflang 2008, Maertens 2007, Maertens 2002, Maertens 2001, Pfeiffer 2006, Cordonnier 2008, May 10, 2014 Maertens 2010

Diagnostic Tools - Β-D-glucan Assay

Population Intention Intervention SoR QoE Comment Mixed population: To diagnose IFD Diagnostic assay C II 4 different assays; Fungitell Adult ICU, (not specific for FDA approved and available Hematological aspergillosis) in US and Europe; others disorders, SOT only available in Japan; overall sensitivity of 77% and specificity of 85%

Specificity limits its value in this setting

Two or more consecutive samples: sensitivity = 65%, specificity = 93%; studies included once to thrice weekly

Screening assays C II Varies with assay and cut‐ off: Wako assay sensitivity = 40‐97%, specificity = 51‐99%

May 10, 2014 Karageorgopoulos 2011, Lu 2011

Starting with Positive GM

Liss B et al. Mycoses 2015: epub ahead. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Starting with Positive GM

Liss B et al. Mycoses 2015. epub ahead.

AmBiGuard Monitoring

Patients routinely monitored for signs and symptoms of IFI throughout the study period • Twice weekly galactomannan (GM) and β-D-glucan (BDG) • Diagnostic workup if …. 1 positive GM/BDG antigen assay • Algorithms followed for investigation and management of suspected IFI

Cornely OA et al. ASH 2014.

Algorithm for Suspected IFI

Positive serum BDGor Serum GM

Thoracic CT Scan

Dense, well-circumscribed lesions, Normal or abnormalities not meeting air crescent sign, or cavity radiographic criteria for an IFI

Stop prophylaxis; start broad- spectrum antifungal therapy Yes 2nd serum GM ≥ 0.5 No CT scan of sinuses (according to clinical judgment)

Abnormal Normal

Evaluate

Positive Negative

Broad-spectrum Continue monitoring; antifungal therapy no antifungal therapy Cornely OA et al. ASH 2014. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

SECURE Study – Baseline pathogens (mITT)

Isavuconazole Pathogen Causing IFDa, b (N = 143) (N = 129)

Proven/Probable IFD 29 (11.2%) / 114 (44.2%) 36 (14.0%) / 93 (36.0%)

Galactomannan onlyc 71 (49.7%) 68 (52.7%)

Aspergillus spp. only 49 (34.3%) 39 (30.2%)

Aspergillus spp. plus other 3 (2.1%) 1 (0.8%) filamentous fungi

Non-Aspergillus spp. only 5 (3.5%) 6 (4.7%)

Filamentous fungi NOS 14 (9.8%) 15 (11.6%)

aAs assessed by the DRC bNote, >90% of the mITT population had pulmonary involvement cSerum: 1 value ≥0.7 or 2 serial values ≥0.5 – <0.7; Bronchoalveolar lavage: 1 value ≥1.0 Maertens J et al. ECCMID 2014.

Stopping with Negative GM

Woods G et al. Cancer 2007.

Consensus statement: Discontinuation of targeted therapy (SoR: C)

• The range of the duration of treatment is huge and the evidence base to support any particular recommendation is weak • Need to separate between targeted and salvage or secondary prophylaxis (and long‐term toxicity) • Need to consider iv oral switch in stable and PK‐reliable patients – Duration depending upon reconstitution of the immune system, continuing GvHD, etc. (i.e. secondary prophylaxis) – Need CR (radiographic imaging, scaring allowed) which includes no clinical or microbiological evidence of disease prior to discontinuation • Close monitoring (e.g radiographical imaging) once discontinued.

May 10, 2014 Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

1,3-ß-D-Glucan

Starting with Positive BDG

Hammerström et al. EJCMID 2015.

Starting with Positive BDG – Raising the Cut-off may Improve Assay Performance

Hammerström et al. EJCMID 2015. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Pre-emptive Therapy: ß-D-Glucan

Popu‐ Intention Inter‐ SoR QoE Reference Comments lation vention

ICU Early To treat CIIu Desmet JCM 2009 •Low specificity treatment of when ß‐D‐ Digby Clin Diagn Lab •Low sensitivity invasive glucan test Immunol 2003 •High NPV candidiasis / is positive Koo CID 2009 •False positives with candidaemia Mohr JCM 2011 •Haemodialysis Presterl Int JID 2009 •Other fungal or Takesue WJSurg •Bacterial infection 2004 •Wound gauze Pickering JCM 2005 •Maybe useful in PCP

Cornely OA et al. Clin Microbiol Infect 2012; 18 (Suppl. 7): 19–37.

Stopping with Negative BDG

Placebo 100 mg Biomarker nn Mean change (SD) from baseline at EOT Beta‐D‐glucan†, pg/mL 54 53.0 (355.7) 44 ‐34.9 (206.6) Candida antibody, AU/mL 103 13.1 (21.4) 87 12.7 (20.9) Mannan antigen, pg/mL 103 24.2 (281.3) 87 18.0 (236.8) EOT assessment PCR detection of Candida 105 7.6% 89 5.6% in patients (%) *Biomarker data were not available for all patients in the FAS; †Positive results ≥62.5 pg/mL) provided, negative results recorded and imputed as <62.5 pg/mL

Vincent JL et al. ISICEM 2013. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Stopping with Negative BDG

• 85 of 2148 ICU patients had all of the below: 1. CVC 2. Antibiotic treatment 3. 2 of: dialysis, surgery, pancreatitis, steroids/immunosuppression, parenteral nutrition 4. 1 of: fever, hypothermia, hypotension, leukocytosis, acidosis, or CRP↑

• Received treatment and  Diagnostic screening  Day 1 and 2: Blood culture  Day 1, 2, and 3: β-D-Glucan

Nucci M et al. ICAAC 2014; M-1754.

Stopping with Negative BDG

N=85

BDG pos. BC pos. BDG neg. BC neg. BC neg. N=57 (67%) N=7 (8%) N=21 (25%)

Nucci M et al. ICAAC 2014; M-1754.

LFD PCR T2 T-cells Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Biomarker/LFD

Population Intention Intervention SoR QoE Comment

Hematological Diagnose IA Evaluation of LFD B III Sensitivity and specificity of BAL LFD malignancy and using BAL samples tests for probable IPA were 100% and solid organ (retrospective 81% (PPV 71%, NPV 100%); transplant study) 5 pts with possible IPA had positive LFD ; no proven patients Hematopoietic Diagnose IA Prospective B III IA: 1 proven, 9 probable, 20 pos. stem cell LFD using screening in 101 1 serum vs 2 serum samples positive: transplantation serum patients sensitivity 40%/20%; (HSCT) samples undergoing allo‐ HSCT specificity 86.8%/97.8%; Comparison to Asp‐ diagnostic odds ratio 3.03/11.13 GM to serum Immunocom‐ Diagnose IA Evaluation of LFD B II Sensitivities for LFD, GM, BDG, PCR were promised pts using BAL samples between 70 and 88%; combined GM (hematological (retrospective (cut‐off >1.0 ODI) with LFD increased the malignancies study) sensitivity to 94%, while combined GM 64%) (>1.0) with PCR resulted in 100% sensitivity (specificity for probable/proven IPA 95‐98%).

May 10, 2014 Hönigl et al. 2012, Held et al. 2013, Hönigl et al. 2014

BAL Aspergillus PCR

Population Intention Intervention SoR QoE Reference Comment Patients undergoing To predict BAL PCR B II Einsele, Lancet, 1998 In house assay allogeneic stem cell IA transplantation recipients not on mold‐active prophylaxis Patients with To BAL PCR B II Tang, Am Rev Respir Dis, 1993 Methodically Bretagne, JCM, 1995 hematological diagnose Jones, J Clin Pathol, 1998 different malignancies and IA Skladny, JCM, 1999 in‐house assays; Buchheidt, CID, 2001 prolonged Hayette, JCM, 2001 better neutropenia Buchheidt, Brit J Haem, 2002 performance in Raad, Chest, 2002 pts without AFT; Spiess, JCM, 2003 ICU pts (mixed pts Meletiadis, Med Mycol, 2003 populations) Sanguinetti, JCM, 2003 Rantakokko, JCM, 2003 Lass‐Flörl, JCM, 2004 Lung Tx pts Musher, JCM, 2004 Khot, BMC Inf Dis, 2008 PCR+GM: Frealle, EJClinMicrobInfDis,2009 increases Bergeron, JCM, 2011 specificity Luong, Transpl 2011 Buess, BMC Inf Dis, 2012 Reinwald, Eur J Hematol, 2012 Reinwald, JAC, 2012 Hönigl et al, JCM 2014

May 10, 2014

Antifungal Stewardship – Rapid Diagnostics

Setting • Prospective cohort study • Patients with candidemia or receiving systemic antifungals • University-affiliated tertiary care hospital

Endpoints • Time to initiation of therapy • Candida species and time to identification • Indications for antifungal use

Aitken SL et al. Ann Pharmacother 2014; 48 (6): 683-690. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Antifungal Stewardship – Rapid Diagnostics

Aitken SL et al. Ann Pharmacother 2014; 48 (6): 683-690.

Antifungal Stewardship – Rapid Diagnostics

Results • N=162 patients with candidemia • Average time to yeast identification: 2.2 ± 1.3 days • Average time to start of antifungal therapy: 3.5 ± 2.1 days • 0.6 ± 0.2 days for T2Candida • 2.6 ± 1.3 days for PNA-FISH (peptide nucleic acid probes) • 2.5 ± 1.4 days for MALDI-TOF • T2Candida in simulation resulted in fewer doses of

Aitken SL et al. Ann Pharmacother 2014; 48 (6): 683-690.

Promises of New Diagnostic Tools – Example

Turning to host response instead of fungal molecules

 T cells as specific diagnostic sensors for invasive fungal infections

 Monitor mold-reactive CD154+ peripheral blood T cells

 Pilot study completed

Bacher P, Steinbach A et al. Am J Resp Crit Care Med 2015. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Promises of New Diagnostic Tools – Example

Frequencies of fungus-reactive T cells

Bacher P, Steinbach A et al. Am J Resp Crit Care Med 2015.

Promises of New Diagnostic Tools – Example

Mold-reactive T cell frequencies and fungal burden in 3 patients with invasive mold infection

Bacher P, Steinbach A et al. Am J Resp Crit Care Med 2015.

Making Use of GM, BDG, Baseline CT, and Biopsy in Hematology Patients

• N=203 • Intensive therapy • Expected neutropenia ≥10 d • Prospective, F/U median (range) of 556 (12–730) d • Baseline CT, GM biw, targeted BDG in possible IFD or when GM positive

Ceesay MM et al. Br J Haematol 2014. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

Making Use of GM, BDG, Baseline CT, and Biopsy in Hematology Patients

Ceesay MM et al. Br J Haematol 2014.

Making Use of GM, BDG, Baseline CT, and Biopsy in Hematology Patients

Incidence (95% CI) of proven/probable IFD by tools used

= GM, BDG, CT, biopsy, blood cultures, BAL, autopsy

Ceesay MM et al. Br J Haematol 2014.

Summary of Current Use of GM & BDG

• Positive GM should trigger immediate diagnostic work-up • Negative GM is a pre-requisite, but not sufficient for stopping treatment • Positive BDG should not trigger treatment • Negative BDG should be used for stopping empiric Candida- directed treatment

Both tests should ideally be used in the context of clinical judgement, other IVD assays, and imaging studies Institutional algorithms should be informed by ESCMID- ECMM guidance. Cornely - Can we start or stop antifungal therapy based on biomarkers detection?

7th Trends in Medical Mycology | 9‐12 October 2015

www.TIMM2015.org Meletiadis - Where does TDM make sense?

Where does TDM make sense?

Joseph Meletiadis, Ph. D. Assistant Professor in Mycology

Clinical Microbiology Laboratory, «Attikon» University General Hospital, National and Kapodistrian University of Athens, Greece

Determinants for clinical outcome

Andes AAC 2009

Dose and serum concentrations Voriconazole r2=0.99 Candidaemia, Severely OPC Septic CV<25% Patients CV of CL=45% Burn Patients CV of Vd=43%

Pai et al, AAC 2011 Rodriguez-Tudela et al, AAC 2007 Han et al, AAC 2013 Meletiadis - Where does TDM make sense?

Sources of PK variation Age e.g. larger extracellular and total-body water spaces in neonates Gender e.g. women empty solids from the stomach more slowly and have higher gastric pH Physiological Factors e.g. body size and composition, gastrointestinal physiology, hepatic status, and renal excretion Pathological conditions e.g. renal or hepatic insufficiency, Drug Interactions Environmental Factors e.g. pollutants or diet Chemical Properties

e.g. the AUC0-48 and Cmax of (−)- were three to four times higher than those of (+)-itraconazole Genetic polymorphisms e.g. SNPs in drug metabolizing enzymes and efflux proteins Meletiadis CMR 2008

Therapeutic drug monitoring

Measure drug concentrations in blood and adjust the dose in order to

• Reduce toxicity • Increase efficacy • Prevent emergence of resistance • Avoid breakthrough infections

Methods A drug assay should be  accurate,  short turnaround time  sensitive,  cost effective  precise,  minimal sample volumes  specific

Method Advantages Disadvantages Bioassay ‐cheap ‐interference from other ‐simple to perform drugs, including other antifungals and metabolites (e.g. itraconazole) HPLC with ultraviolet ‐widely available; ‐interference from fluorescence detection ‐commercially available assays; miscellaneous substances; ‐multiple drugs in single sample ‐runtimes maybe slow

Liquid chromatography– ‐very sensitive and specific; ‐expensive; mass spectrometry ‐multiple drugs in single sample ‐not widely available Meletiadis - Where does TDM make sense?

The profile of drugs for TDM A. Variable pharmacokinetics 1. Erratic/Saturable Absorption - Itraconazole, 2. Changes in Distribution - fluconazole 3. Differential/Saturable Metabolism - voriconazole 4. Altered Excretion - fluconazole, B. Exposure-toxicity relationship - flucytosine, itraconazole, voriconazole C. Exposure-response relationship - voriconazole, itraconazole, posaconazole, flucytosine

1. PK variation‐Absorption itraconazole and posaconazole 78,2% <0.92 mg/l 16.3% <0.125 mg/l

•  capsule solubility in acidic environment • saturated above 800 mg/day • manufactures' variability • Better absorption with fatty food and low stomach pH •  absorption with PPI and H2-antagonists • Suspension: 20-50% higher bioavailability •  absorption mucositis, diarrhea, • Extensive variability PPI •  bioavailability with tablet/caps • Large Variability De Beule et al, Drugs 2001, Ullmann et al , AAC 2006

2. PK variation‐Distribution fluconazole in burn patients

Han et al AAC 2013 Meletiadis - Where does TDM make sense?

3. PK variation–Metabolism voriconazole and hepatic metabolism CYP genotype Saturation

Slow metabolisers cirrhosis/CYP 2C19 polymorphism (3-5% Caucasians, 15-20% South East Asians) Fast metabolisers small children/CYP 2C19 polymorphism (4% Chinese, 20% Swedes) Theuretzbacher Clin Pharm 2006, Felton et al AAC

4. PK variation–Excretion fluconazole in anuric pts with CVVHDF

Coefficient of Variation

CLCVVHDF =17% and CLnon-CVVHDF =78%

Patel et al, AAC 20011

PK variation of other drugs

Liposomal

Cmax=18.0 ± 8.6 Cmax = 8.47 ± 2.73 Cmin= 6.5 ± 5.8 Cmin = 2.86 ± 1.13 AUC=228 ± 159 mg · h/liter AUC= 112 ± 28.4 mg · h/liter

Würthwein et al AAC2012 Meletiadis - Where does TDM make sense?

5. Exposure‐toxicity relationships

Flucytosine and toxicity AMB+FC in cryptococcal meningitis

70 60 50 40 toxicity 30 of

% 20 10 0 Cmax > 100 mg/l Cmax < 100 mg/l Stamm AM,et al. Am J Med 1987

Itraconazole and toxicity

fluid retention, hepatotoxicity, electrolyte disturbance, confusion and gastrointestinal tolerance

Lestner et al CID 2009 Meletiadis - Where does TDM make sense?

Voriconazole and toxicity

31%: ≥ 5.5 mg/L 31% CNS toxicity 19% hepatitis Rash/cancer, hepatic reactions (LFT), visual disturbances

Pascual et al CID 2008

6.Exposure‐response relationships

Itraconazole and response • Breakthrough infections are more common in neutropenic patients with trough itraconazole concentrations of <0.25–0.5 mg/L. • Μortality is significantly higher in patients with concentrations <0.5 mg/L. • Patients with infections caused by Aspergillus spp., C. neoformans and Histoplasma capsulatum tend to have better clinical outcomes with higher itraconazole trough concentrations • Patients with oropharyngeal and oesophageal candidiasis also have better responses to itraconazole therapy if serum concentrations are >0.6–1 mg/L • Note that several trials did not find correlation or they were

inconclusive Ashbee JAC 2014 Buchkowsky, TDM 2005 Meletiadis - Where does TDM make sense?

Voriconazole and efficacy

Pascual et al CID 2008

Voriconazole and prophylaxis

HSCT patients (92)

Prophylaxis with voriconazole

Invasive aspergillosis (0) Breakthrough IFI (10)

Candida (6) Zygomycetes (4) C. glabrata (5) C. krusei (1) VCZ plasma levels 0.63 3.65 (0.33-1.78) (1.1-5.9) Trifilio et al, BMT 2007

Clinical trials for voriconazole TDM

Chau et al, Int Med J 2014 Meletiadis - Where does TDM make sense?

Posaconazole and efficacy Salvage therapy of invasive aspergillosis

Walsh et al CID 2007

Posaconazole and prophylaxis

Cavg Clinical failure 0.289 44% 0.736 21% 1.239 18% 2.607 18%

Jang Clin Pharmacol Ther. 2010 Dolton AAC 2012

Clinical trials for posaconazole TDM

Chau et al, Int Med J 2014 Meletiadis - Where does TDM make sense?

Clinical settings for TDM

• Special patient populations – children, neonates, elderly, obese, – organ dysfunction, critical illness – haemodialysis, haemofiltration, extracorporeal membrane oxygenation, cardiopulmonary bypass • Changing pharmacokinetics – physiological instability, critical illness, diarrhea, iv‐to‐oral switch, change dose • Interacting drugs – antacids, histamine antagonists, proton pump inhibitors, aniepiletpics, antiretrovials, antibiotics, barbiturates • Compliance – longer‐term consolidation therapy or secondary prophylaxis • Persistent and/or significant underlying immunological defects – prophylaxis versus established disease • Poor prognostic disease – extensive or bulky infection, CNS or multifocal infection, infections by resistant isolates Ashbee et al. JAC 2014

TDM based on in vitro susceptibility and in special patients population fluconazole and Candida

Han et al, AAC 2013 Rodriguez-Tudela et al, AAC 2007 S I R

Outcome and voriconazole serum concentration/MIC ratio

Troke et al AAC 2011 Meletiadis - Where does TDM make sense?

TDM based on in vitro susceptibility voriconazole and Aspergillus fumigatus

8 Voriconazole tAUC 7 Toxicity 210 6 180

5 150

4 120

3 90 0-12 (mg.h/L) 2 60

1 30

Voriconazole trough levels (mg/L) troughVoriconazole levels 0 0 0.0625 0.125 0.25 0.5 1 2 4 8 Voriconazole EUCAST MIC (mg/L) S I R Siopi et al JAC 2014

TDM based on in vitro susceptibility posaconazole and Aspergillus fumigatus

Target values for b.i.d. regimens

8 108.0 tAUC Posaconazole not clinically achievable 7 94.5

6 81.0

5 67.5

4 54.0

3 40.5 0-12

iv 300 mg bid (mg.h/l) 2 27.0

1 13.5 oral 400 mg bid

Posaconazole trough levels (mg/l)0 0.0 0.03125 0.0625 0.125 0.25 0.5 1 2 4 Posaconazole MIC (mg/l) S I R Elefatni et al ICAAC 2013

Summary

Significant Main Source Target blood concna (µg/ml) for: Drug PK variability of PK Day for TDM (CV) variation Efficacy Evidence Safety Evidence Amphotericin B No ‐‐ ‐ (<50%) Echinocandins No ‐‐ ‐ (<50%) Flucytosine Yes, Excretion 3‐5Prophylaxis: NA NA (50‐100%) Therapy: Cmin >20 ● Cmax<100 ● Fluconazole No ‐‐ ‐ (<50%) Itraconazole Yes, Absorption, 5‐7Prophylaxis: Cmin >0.5; ● Cavg < 17 ● (80‐100%) Metabolism Therapy: Cmin >0.5‐1 ● (bioassay) Voriconazole Yes, Metabolism 3‐5 Prophylaxis: Cmin>0.5; ● Cmin <6 ● (80%‐100%) Therapy: Cmin >1‐2 ● Posaconazole Yes, Absorption 5‐7 Prophylaxis: Cmin >0.5‐0.7; ● NA (oral 80‐100%) Therapy: Cmin >1‐1.25 ● (tablet/caps/iv 2 Cmin>0.35 <50%)

●Low ●Moderate ●High Arendrup - Does antifungal resistance occur everywhere?

Does antifungal resistance occur everywhere?

Maiken Cavling Arendrup [email protected] Unit of Mycology Statens Serum Institute Denmark

Disclosures last 5 years: Research grants or Speaker: Astellas, Basilea, Gilead, MSD & Pfizer; Advisory board: MSD, Pcovery, Pfizer; Acted as consultant for: Alcimed, Astellas, Gilead & Pfizer Chair(wo)man for EUCAST‐AFST; Advisor for CLSI 2012‐14 M Cavling ARENDRUP

Agenda

Intrinsic resistance vs Acquired resistance . species . mechanisms

Size of the problem . Candida . Aspergillus

Conclusion

M Cavling ARENDRUP

Antifungals spectrum: Yeasts

Trichosporon Candida Cidal & Biofilm albicans/tropicalis glabrata krusei parapsilosis Geotrichum Amphotericin ++++ +/? + ++++/? ‐ + Caspofungin ++++/? ‐ + Micafungin ++++/? ‐ + Fluconazole + +/‐‐ + +/‐‐ Itraconazole + +/‐ +/‐ + +/‐‐ Posaconazole + +/? +/? ++‐ Voriconazole + +/? +/? ++‐ 5‐FC ++‐ + ‐ +/‐

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Antifungals spectrum: Yeasts

Trichosporon Candida Cidal & albicans/tropicalis glabrata krusei parapsilosis Biofilm +/‐ Geotrichum Amphotericin ++++C. lusitaniae, C. ciferrii +/? + Anidulafungin ++++/? ‐ + Caspofungin ++++/? ‐ + Micafungin ++++/? ‐ + Fluconazole + +/‐‐ + +/‐‐ Itraconazole + +/‐ +/‐ + +/‐‐ Posaconazole + +/? +/? ++‐ Voriconazole + +/? +/? ++‐ 5‐FC ++‐ + ‐ +/‐

M Cavling ARENDRUP

Antifungals spectrum: Yeasts

Trichosporon Candida Cidal & albicans/tropicalis glabrata krusei parapsilosis Biofilm +/‐ Geotrichum Amphotericin ++++C. lusitaniae, C. ciferrii +/? + Anidulafungin ++++/? ‐ + +/‐ Caspofungin +++C. fermentati , C. guilliermondii +/? ‐ + C. metapsilosis and C. orthopsilosis Micafungin ++++/? ‐ + Fluconazole + +/‐‐ + +/‐‐ Itraconazole + +/‐ +/‐ + +/‐‐ Posaconazole + +/? +/? ++‐ Voriconazole + +/? +/? ++‐ 5‐FC ++‐ + ‐ +/‐

M Cavling ARENDRUP

Antifungals spectrum: Yeasts

Trichosporon Candida Cidal & albicans/tropicalis glabrata krusei parapsilosis Biofilm +/‐ Geotrichum Amphotericin ++++C. lusitaniae, C. ciferrii +/? + Anidulafungin ++++/? ‐ + +/‐ Caspofungin +++C. fermentati , C. guilliermondii +/? ‐ + C. metapsilosis and C. orthopsilosis Micafungin ++++/? ‐ + Fluconazole + +/‐‐ + +/‐‐ +/‐ Itraconazole +C. ciferrii, C.+/ fermentati,‐ +/ C. ‐guilliermondii,+ +/‐‐ C. humicula, C. inconspicua, Posaconazole +C. lambica,+/? C. lipolytica, +/? ++‐ C. norvegensis, C. palmioleophila, Voriconazole +C. rugosa and+/? C. valida +/? ++‐ 5‐FC ++‐ + ‐ +/‐

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Antifungals spectrum: Moulds

Aspergillus Aspergillus Zygo‐ Fusarium fumigatus terreus flavus niger Cidal? mycetes Amph. B + ‐ +/‐ ++ (+)(+) Anidula ++++‐‐‐ Caspo ++++‐‐‐ Mica ++++‐‐‐ Fluco ‐‐‐‐‐ ‐‐ Itra ++++/‐ ‐‐‐ Posa ++++? ++/‐ Vori ++++++/‐ ‐ 5‐FC ‐‐‐‐‐ ‐‐

M Cavling ARENDRUP

Intrinsic and Primary resistance

Intrinsic resistance:  Variable susceptibility ()

AMB Echinocandins Aspergillus section fumigati A. fumigatiaffinis  A. lentulus  () N. pseudofischeri ()  A. viridinutans  N. udagawae (vor) A. terreus (and A. alabamensis)  A. flavus  ()() A. versicolor (and A. sydowi)  () A. calidoustus  () A. allilaceus ()()

Alcazar‐Fuoli AAC 2008; Perlin & Mellado in “Aspergillus fumigatus and Aspergillosis” 2008; Varga Eukariotc Cell 2008, Linden Med Mycol 2011M Cavling ARENDRUP

Systemic Antifungals: Mode of Action

Glucan synthase Cell wall ß‐1,3 glucan Gene: FKS Echinocandins ‐ • Anidulafungin • Caspofungin • Micafungin Lanosterol Cyt P450 ‐ Polyenes Gene: ERG11 • Amphotericin B CYP51A ‐ ‐ Azoles ‐ • •Flu‐ & itraconazole Flucytosine • Voriconazole & posaconazole

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Acquired Resistance in Candida

Compound Azoles Echinocandins Amphotericin B

Target P450 demethylase Glucan synthase Ergosterol

FKS1 ERG2, 3, 5 and 11 (C a) Target gene ERG11 FKS2 ERG1, 2, 6 and 11 (C g) mutation  less binding  less binding  less ergosterol

Target up‐ ERG11‐ regulation Promotor

MDR, CDR Efflux pumps CgSNQ2

M Cavling ARENDRUP

Acquired Resistance in Aspergillus

Compound Azoles Echinocandins Amphotericin B

Target P450 demethylase Glucan synthase Ergosterol

Target gene CYP51A FSK1 * mutation CYP51A+ Promotor Target up‐ or  regulation P88L in HapE

Efflux pumps ABC & MF

* only laboratory engineered strains Found in DK isolates

M Cavling ARENDRUP

Agenda

Intrinsic resistance vs Acquired resistance . species . mechanisms

Size of the problem . Candida . Aspergillus

Conclusion

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Intrinsic Azoles Resistance

C. glabrata proportion

16 19 21 16 22 16 30 22 14 17 14 13 20 8 5 12 12 24 7 18

5 8 15‐13

Arendrup, Current Opinion Crit Care, 2010, CMI 2013 & unpublished data M Cavling ARENDRUP

Intrinsic Azoles Resistance

C. glabrata proportion

16 19 21 16 22 16 30 22 14 17 14 13 20 8 5 12 12 24 7 18

5 8 + 15‐13 C. krusei 4% Other* 2% 6% *C. ciferrii, C. fermentati, C. guilliermondii, C. humicula, C. inconspicua, C. lambica, C. lipolytica, C. norvegensis, C. palmioleophila, C. rugose, C. valida and S. cerevisiae (DK nation‐wide data 2012‐13)

Arendrup, Current Opinion Crit Care, 2010, CMI 2013 & unpublished data M Cavling ARENDRUP

Intrinsic Echinocandins “resistance”

C. parapsilosis proportion

3 5 12 7 6 4 7 13 8 9 15 15 7 23 32 39 21 13 16 20

21 22 20‐26

Arendrup, Current Opinion Crit Care, 2010, CMI 2013 & unpublished data M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Prior AF exposure & intrinsic resistant candidaemia

C. glabrata, C. krusei or S. cerevisiae . 57.1% (16/28) ≥ 1 week antifungal exposure . 28.6% (6/21) < 1 week exposure . 28.3% (73/258) No exposure

Paris observation

NoNo fluconazole Fluconazole (2,289)(n. 2,289)

9) (15 zole ona Fluc

Cas pof ung in ( 61) NoNo caspofungin Caspofungin C. albicans (2,387) C. glabrata (n. 2,387) C. parapsilosis C. tropicalis C. krusei

Arendrup JCM Sept 2011, Lortholary AAC 2011 M Cavling ARENDRUP

Increasing AF usage and intrinsic resistance

Nation‐wide data Denmark Single Tertiary Centre US - 2004  2013 - 2002  2006 - 5008 blood isolates - 469 candidaemia cases days %

C. %

C. parapsilosis

glabrata patient

DDD

1000

1000 per

DDD

Arendrup CMI 2013 and ECCMID 2015; Forrest J Infect 2008 M Cavling ARENDRUP

Acquired Echinocandin R in C. glabrata

14 America Europe 12 10 8

6 isolates

4 % 2 0

Shields AAC 2013; Alexander CID 2013; Nucci PlosOne 2013; Lockhardt JCM 2012; Pfaller JCM 2011; Arendrup M Cavling ARENDRUP ECCMID 2015; Tortorano Infection 2009. Arendrup - Does antifungal resistance occur everywhere?

Echinocandin use and resistance

Fluconazole & Echinocandin use (a Paris tertiary centre)

Year Patients on echinocandins DDD/patient Breakthrough rate 2011 213 16.7 3.3% P: 0.03 2012 216 13.3 0.5%

Echinocandin R isolates: 7 1 Mean exposure for patients with “R” isolates:

33 days (8‐58 days) Week 1: 0 Week 2: 2 Week 4: 1 Week 5: 1 Week 8: 1 Week 9: 1

Fekkar EJCMID 2014 M Cavling ARENDRUP

C. glabrata echinocandin MIC & outcome

Cancer patients w 93 blood isolates in 2005‐13)

Survival day 28 74.6% (50/67) caspofungin MIC<0.25 mg/L

58.3% (7/12) caspofungin MIC 0.25 mg/L 50% (5/10) caspofungin MIC 0.5 mg/L

25% (1/4) caspofungin MIC >2 mg/L log-rank p = 0.001 for linear trend

Farmakiotis Emerg Inf Dis 2014 M Cavling ARENDRUP

Agenda

Intrinsic resistance vs Acquired resistance . species . mechanisms

Size of the problem . Candida . Aspergillus

Conclusion

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Intrinsic resistance in Aspergillus

A. terreus high “endemic” centres . Houston, Texas, 1993‐2012: ‒ 18.7% (96/513) with A. terreus alone ‒ 16.0% (82/513) with A. terreus in mixed infections PATH alliance study . Innsbruck, Austria, 1994‐2004: (960 cancer pts US) ‒ 47.8% (32/67 IPA cases in haematological patients) A. fumigatus 72.6% A. flavus 9.9% A. flavus A. niger 8.7% A. terreus 4.3% . Developing countries ‒ 50 and 80% of allergic fungal rhinosinusitis cases in India and the Middle East

A. fumigatiaffinis, A. lentulus, N. pseudofischeri, A. viridinutans, N. udagawae, A. calidoustus, A. allilaceus . RARE

Hachem JAC 2014, Lass‐Flörl BJHaem 2005, Steinbach JInf 2012, Chakrabarti COID 2011 M Cavling ARENDRUP

Fungicide use & “R” A. fumigatus reports

Global market share of fungicide use in agriculture; TR34/L98H A. fumigatus TR46/Y121F/T289A A. fumigatus 9% N‐America 37% W‐Eur. 5% E‐Eur.

24% Asia‐ Pacific

22% S‐ & Latin America

Stensvold Curr Fungal Inf Reports 2012, Rath AAC 2012, Chowdhary Plos One 2012, Badali Mycoses 2013; Chowdhary M Cavling ARENDRUP JAC 2014 Jan & Nov.

Azole resistant A. fumigatus in azole naïve patients in Europe

TR34/L98H detected

“New” azole resistance mechanisms detected in azole naïve patients or in the environment NL:

TR46/Y121F/T289A France: G432S

Scare Study, Denning CID 2011, Snelders PLoS Med 2008, Mortensen AAC 2010, Verweij ICAAC 2010, Mellado AAC 2007, Rath M Cavling ARENDRUP AAC 2012, Stensvold Current Fungal Infection Reports 2012, van der Linden CID 2013, Bader AAC 2013, Personal comm. Arendrup - Does antifungal resistance occur everywhere?

Azole resistant Aspergillus – resistance profiles

Azole “S” TR34/L98H TR46/Y121F/T289A

41 ITR VRC

0.5 No PSC AF

wild type pan‐azole R Voriconazole R Isavuconazole R Itraconazole S/I Posaconazole S/I

Astvad AAC 2014, Chowdhary JAC 2014, van Ingen JAC 2015 M Cavling ARENDRUP

Voriconazole “R” in the NL

December 2009 ‐ January 2011 “TR46” in 1315 A. fumigatus isolates from 921 patients environment . 63 patients w azole resistance 6.8% ‒ 47 patients with the TR34/L98H (74.6%) ‒ 13 patients with the TR46/Y121F/T289A (20.6%) “TR46” in hosp ‒ 3 patients with no CYP51A mutations (4.7%)

Environmental sampling (140 azole R samples)

. 10% TR46/Y121F/T289A  found 6/9 sites

. 90% TR34/L98H  found at 9/9 sites No TR46

Van der Linden CID 2013 M Cavling ARENDRUP

Agenda

Intrinsic resistance vs Acquired resistanceYES Intrinsic resistance in Candida . species occurs everywhere . mechanisms

YES Acquired Echinocandin resistance in Candida is Size of the problem emerging in exposed patients . Candida everywhere . Aspergillus No Acquired resistance in Candida does not occur in naïve almost patients “anywhere” Conclusion

YES Acquired resistance in Aspergillus occurs everywhere

M Cavling ARENDRUP Arendrup - Does antifungal resistance occur everywhere?

Acknowledgements (in alphabetic order):

The EUCAST Steering Committee M Cuenca‐Estrella SJ Howard C Lass‐Flörl J Meletiadis The Danish Fungaemia Study Group J Mouton Dzajic E Rosenvinge FS The EUCAST General Committee Johansen HK Kjældgaard P Other collaborators Knudsen JD Jensen RH Kristensen L Astvad K Lemming LE W Hope Nielsen L BJ Kullberg Olesen B DS Perlin Røder B M Pfaller Thøger Gorm P Verweij Schønheyder HC Thank you for your attention

M Cavling ARENDRUP Arikan ‐ New antifungals in the pipeline

25th ECCMID 25-28 April 2015, Copenhagen-Denmark

EW03: Optimising Antifungal Therapy- Bridging Laboratory and Clinical Expertise

New Antifungal Drugs in the Pipeline

Prof. Sevtap Arikan-Akdagli, MD Hacettepe Univ. Med. Sch. Dept. of Med. Microbiology Ankara Turkey

Disclosure

• No conflict of interest related to this presentation

• Otherwise, in the last five years: Investigator Initiated Research Grant from Pfizer

Lecture honoraria from Astellas, Gilead, Merck, and Pfizer

2

Agenda

• •

3 Arikan ‐ New antifungals in the pipeline

Targets & Mechanisms of Action of Antifungals

Maubon et al. Inten Care Med 2014; 40: 1241

Early Antifungal Pipeline

Ostrosky-Zeichner et al. Nature Rev 2010; 9: 719 5

Calderone et al. Future Microbiol 2014; 9:791 6 Arikan ‐ New antifungals in the pipeline

New Drugs: “Expected” Advantages

• Efficacy in difficult‐to‐treat IFI due to fungi resistant / less susceptible to available drugs (multi‐drug‐resistant strains, resistant/less susceptible genera including Fusarium, Scedosporium, Lomentospora, those belonging to order Mucorales,…) • More favorable safety • PK profile enabling reduced dosing • Formulation • More favorable drug–drug interaction profile

7

Azoles

Triazoles Isavuconazole

Imidazole

8 Ostrosky-Zeichner et al. Nature Rev 2010; 9: 719

ISAVUCONAZOLE (BAL‐8557)

1358 Candida, 101 Aspergillus, 54 non‐Candida yeast, 21 non‐Asp mould ‐‐‐CLSI

µg/ml

ISV (/POS /VOR) MIC90 >8 Non‐Aspergillus mould (Penicillium, Paecilomyces, S. apiospermum, Gibberella, Sarocladium) 2 / 1 /1 Aspergillus spp. 1 Non‐Candida yeast (Trichosporon) 0.5 / 1 / 0.25 Candida spp. 0.125 Cryptococcus neoformans Mucorales (3 strains) ISV / POS MIC range: 1‐4/1

Percent agreement ( +1, +2 two‐fold dil.) betw. CLSI & EUCAST methods: 90.1 and 99.1%, respectively (111 strains, Candida) 9 Arikan ‐ New antifungals in the pipeline

ISAVUCONAZOLE

Species Preliminary 1237 Aspergillus 2010 Candida ECOFFs (mg/l) 4 lab.s A. fumigatus 2 A.flavus 2 • Elevated ISV MICs for A.fumigatus w

A.nidulans 0.25 TR34/L98H mutants A.niger 4 • Wild-type MICs for A.terreus 2 G54 and M220 C. albicans 0.03 alterations C. parapsilosis 0.03 C. tropicalis 0.03 10

ISAVUCONAZOLE

11

ISAVUCONAZOLE

12 Arikan ‐ New antifungals in the pipeline

ISAVUCONAZOLE

13

Isavuconazole and Trichosporon

CLSI M27‐A2 ISAVU VORI POSA FLU AMB 5-FC

T. asahii (40) MIC90 0.125 0.06 0.25 2 2 8 MFC90 20.54168>64 T. mucoides (10) MIC90 0.25 0.06 0.25 1 2 32 MFC90 4 >16 4 >64 2 >64 T. inkin (4) MIC 0.03-0.125 0.03 0.06-0.13 0.25-0.5 0.25-1 8-16 range MFC 0.06-4 0.03-0.125 0.06-0.5 0.25-4 0.5-2 16-32 range

Inhibitory activity rank order: Cidal activity rank order: asahii: Vori>Isavu>Posa>Flu=AMB>5-FC asahii: Vori>Isavu>Posa>AMB>Flu>5-FC mucoides: Vori>Isavu=Posa>Flu>AMB>5-FC mucoides: AMB>Isavu=Posa>Vori>5-FC

Thompson et al. JAC 2009; 64: 79

ISAVUCONAZOLE Arikan ‐ New antifungals in the pipeline

Isavuconazole and Trichosporon: In vitro data 1

Hazirolan et al. AAC 2013 Oct 57: 4841 CLSI M27‐A3

Isavuconazole and Trichosporon 2

CLSI M27‐A3

Hazirolan et al. AAC 2013 Oct 57: 4841

Isavuconazole and Trichosporon 3 24h vs. 48h

CLSI M27‐A3

Hazirolan et al. AAC 2013 Oct 57: 4841 Arikan ‐ New antifungals in the pipeline

Isavuconazole and Trichosporon 4 Concluding remarks for MICs and MFCs

Hazirolan et al. AAC 2013 Oct 57: 4841

Isavuconazole and Trichosporon 5 n=5Time‐kill studies (32xMIC-2xMIC) FLU, ITRA, VORI, POSA, ISAVU

Hazirolan et al. AAC 2013 Oct 57: 4841

Isavuconazole and Trichosporon 6 Concluding remarks for time‐kill studies No fungicidal activity with any of the tested (no decrease of

≥99.9% or 3-log10 ) - - all are fungistatic The lowest concentration at which killing activity begins is for voriconazole and the highest is for fluconazole The number of colonies decreases rapidly at > 2xMIC concentrations for all drugs. Again for all, maximum reduction is observed 48 hours after the incubation.

Killing activity starts above (µg/ml) Strain no. FLU ITRA VORI POSA ISAVU T.asahii ATCC 201110 * 2 0.125 1 0.125 Clinical strain no. 1 * 2 0.5 2 1 2 32 * * 2 2 3 64 * 0.5 * * 4 32 1 * 4 2 *killing activity was not observed at tested concentrations

Hazirolan et al. AAC 2013 Oct 57: 4841 Arikan ‐ New antifungals in the pipeline

Isavuconazole ( sulfate) Astellas Pharma, US, Inc. – License holder Basilea Pharmaceu., Switzerland – outside USA and Canada

• FDA approves new antifungal drug Cresemba (Oral/IV) March 6, 2015

Invasive Aspergillosis Invasive Mucormycosis

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm437106.htm 22

Efficacy of Isavuconazole in (proven/probable) IA

SECURE Study Phase 3 randomized double-blind active control study adult pat.s - IFI 516 pat.s • Noninferiority to voriconazole Overall Success All cause mortality (day 42) ISV ISV 35% 18.6% VOR VOR 39% 20.2% 23

Safety of Isavuconazole in IA

SECURE Study Phase 3 randomized double-blind active control study adult pat.s - IFI 516 pat.s • Similar rates of mortality and nonfatal adverse events as voriconazole

• Statistically fewer AE and tx-emergent adverse events (hepatobiliary, skin, eye) compared to voriconazole

24 Arikan ‐ New antifungals in the pipeline

Safety and Efficacy of Isavuconazole in IA / IFI

VITAL Study Phase 3 open-label non-comparative • Pat.s w. IA and renal impairm. or w. IFI due to other fungi, including Mucorales

37 cases All-cause mortality 38% Survival at 180 days 53% 8% (of 76%) serious AE attributed to ISV

Marty et al. ID Week 2014 Annual Meeting Philadelphia, PA, USA; October 8–12, 2014; Abst. No. 824

25

ISAVUCONAZOLE

• Safety and tolerability of ISV at 200 mg/day and 400 mg/day for prophylaxis

LOW DOSE COHORT Loading doses Day 1 400/200/200 mg 6h apart Day 2: 200/200 mg 12h apart Maintenance doses Days 3‐28 200 mg once daily HIGH DOSE COHORT X2

20 pat.s completed the study; 18/20 classified as tx. success

Most common adverse event: Headache and rash 2pat.s in each cohort discontinued due to ISV‐related AE (Hypersensitivity Rx, infusion related Rx., nausea, dizziness, skin inf. / petechiae

26

Isavuconazole ACTIVE Phase III Study

• Safety & efficacy ‐ Invasive candidiasis • Isavuconazole vs. caspofungin followed by oral voriconazole • Results expected in second half of 2015

27 Arikan ‐ New antifungals in the pipeline

Efinaconazole (KP‐103) (JUBLIA® Valeant Pharmaceu., Canada)

• Topical 10% sln. – mild to moderate distal lateral subungual onychomycoses • Low keratin affinity • Early tx. prevents disease progression to other toenails • Two Phase 3 trials ‐ published • FDA approval: September 2014

Sugiura et al. AAC 2014; 58: 3837; Elsayed J Control Release 2015; 199: 132 28

EFINACONAZOLE

MIC90 M38‐A2, M27‐A3 (µg/ml) MICssimilarorlower 0.125 compared to 0.06 C. albicans terbinafine, 0.03 itraconazole, amorolfine, 0.015 T. mentagrophytes 0.008 T. rubrum

Active also against Microsporum, Epidermophyton, Acremonium, Fusarium, Paecilomyces,

Pseudallescheria, Scopulariopsis, Aspergillus 29

EFINACONAZOLE Efinaconazole 10% solution in the treatment of toenail : Two phase III multicenter, randomized, double‐blind studies

Elewski et al. J Am Acad Dermatol 2013; 68: 600

• Vehicle-controlled • n= 870 and n=785 • 48 wk. tx., 4 wk. posttx. follow-up • Primary endpoint: Complete cure (clinical and mycological) at wk. 52 • Complete cure rate significantly higher for efinaconazole (study 1: 17.8% vs 3.3%, study 2: 15.2% vs 5.5%, P < .001)

30 Arikan ‐ New antifungals in the pipeline

Luliconazole (NND‐502)

• Cream 1%, solution 10% • High concentration - nail plate • Phase 3 (Tinea pedis) • Phase 2b/3 (Distal subungual onychomycoses of the toenails) Randomized, double-blind, vehicle- controlled, 10% solution • Approved, Japan, 2005 (T.pedis, T.corporis, T.cruris, T.versicolor, candidiasis) • Approved, USA, Nov 15, 2013 (T.pedis, T.corporis & T.cruris)

Elsayed J Control Release 2015; 199: 132 31

LULICONAZOLE

M38‐A2, MIC‐1

Remarkably lower MICs as compared to comparators

LULICONAZOLE

Efficacy and Safety of Once‐Daily Luliconazole 1% Cream in Patients ≥12 Years of Age With Interdigital Tinea Pedis: A Phase 3, Randomized, Double‐Blind, Vehicle‐Controlled Study Jarratt et al. J Drugs Dermatol ; 2014; 13: 838

321 pat.s 14 days tx. Complete clearance at day 42: 26.4% (luli) vs. 1.9% (control)

Efficacy and tolerability of luliconazole cream 1% for dermatophytoses: ameta‐analysis Feng et al. J Dermatol 2014;41:779

‘…………….. more effective than control drugs (1% terbinafine, 1% ) or vehicle (week 4: odds ratio = 1.46, 95% confidence interval = 1.12‐1.91)…...’

33 Arikan ‐ New antifungals in the pipeline

Albaconazole (UR‐9825) Actavis, Ireland

• Orally active • PK - capsule & tablet (Phase I randomized study; tb. Cmax 10-22% lower than that of capsule) • Efficacy in animal models (Aspergillus, Candida, Cryptococcus, Scedosporium) – no further development • Phase II – vulvovaginal candidiasis study terminated • Phase II onychomycosis study published

van Rossem et al. Clin Pharmacol 2013; 5: 23; Ostrosky-Zeichner et al. Nature Rev 2010; 9: 7; Miller et al. AAC 2004; 48: 384

34

ALBACONAZOLE

M38‐P Comparator:AMB

Lower MIC90s than AMB against all except F.solani and Scytalidium

35

ALBACONAZOLE Sigurgeirsson et al. J Am Acad Dermatol. 2013 Sep;69:416 A phase II, randomized, double‐blind, placebo‐controlled, parallel group, dose‐ranging study to investigate the efficacy and safety of 4 dose regimens of oral albaconazole in patients with distal subungual onychomycosis

• 584 pat.s • Once weekly 100 to 400 mg ALB vs. placebo • 24-36 wk. tx. Follow-up period: wk. 52 • Effective tx. rates (all groups):21-54%vs.1%(placebo) • Effective tx. observed at wk. 24 in >5% of pat.s • Tx.-related AE: < 3%; no serious AE • No comparison to other available tx.s

36 Arikan ‐ New antifungals in the pipeline

Selected notes on some investigational compounds in Phase 1‐2 / preclinical trials

37

Compound Company Development Model/Study Related (Notes) Status Ref.s SCY078 Scynexis, Phase 2 IC, nonneutr. Onishi AAC Durham, (oral, vs. 2000; Pelaez (formerly MK‐ Syst Appl NC, USA Standard‐of‐Care 3118) Microbiol –MFG or FLU 2000; Pfaller Enfumafungin following initial JAC 2013; derivative IV MFG) Safety, Jimenez‐ Ortigosa AAC IV/Oral PK, efficacy 2014, Lepak AAC 2015

38

MK-3118

3 two‐fold lower MICs for C. glabrata as compared to CAS

Low MICs against Flu‐R isolates & fks mutants

39 Arikan ‐ New antifungals in the pipeline

MK-3118

40

Compound Company Development Model/Study Related Ref.s (Notes) Status VT‐1161 Viamet Phase 2 VVC (vs. FLU) Hoekstra Bioorg (highly selective Pharmaceu., Med Chem Lett fungal CYP51 Durham, NC, Phase 2 T. pedis (vs. 2014; Garvey inhibitor) USA placebo) AAC 2015 (dermatophytosis Phase 2 Onychomycosis, ‐guinea pig; once RVVC daily/once wk.ly) Arasertaconazole Ferrer Intern. Phase 2 VVC (vs. FLU) nitrate (pessary) S.A., Spain Efficacy, safety, Activity against Flu‐R tolerability, dose finding F901318 F 2G Ltd., UK Phase 1 (Single Safety, (New cellular target) asc. IV dose; tolerability, PK, (IA; active against multiple asc. dose ( ‐‐IA, oral) azole‐R Asp) dose)

41

MGCD290

Compound Company Development Model/Study Related (Notes) Status Ref.s MGCD290 Mirati Phase 2 VVC Pfaller DMID 2015; Pfaller (Oral Therapeu., (FLU+MGCD290 JCM 2009; histone CA, USA po vs. FLU; ICAAC 2009 M‐ 1029; ID Week deacetylase mod. to severe 2012; 1619 inhibitor) VVC (Phase 1)

42 Arikan ‐ New antifungals in the pipeline

MGCD290

43

MGCD290

FLU, POS, VOR, MGCD290 Candida , Aspergillus, Mucorales, C. neoformans, Rhodotorula, Fusarium, Trichosporon, Scedosporium

44

Compound Company Development Model/Study Related (Notes) Status Ref.s E1210 Eisai Co., Preclinical IC (candin‐R), Hata AAC 2011; (Inositol Japan IA, Fusariosis Miyazaki AAC acyltransferase ‐ Animal 2011; Pfaller DMID 2011; inhibitor) models Pfaller AAC 2011; Castanheira AAC 2012; Wiederhold AAC 2015

45 Arikan ‐ New antifungals in the pipeline

E-1210

46

Compound Company Development Model/Study Related (Notes) Status Ref.s T‐2307 Toyama, Preclinical IC, IA, Mitsuyama AAC 2008; (Arylamidine) Japan Cryptococcosis Wiederhold ‐Animal AAC 2015 models

47

T-2307

CCCP: Carbonyl cyanide m-chlorophenylhydrazone

48 Arikan ‐ New antifungals in the pipeline

T-2307

Active against Candida spp. (including flu‐R), C. neoformans, and Aspergillus spp.

Susc. of glabrata strongly influenced by the carbon source conc. in the medium. Trailing decreased as the glu conc. in the medium was decreased to < 0.1% and completely inh.ed when glycerol was used. Using alamar blue (10%) facilitated MIC reading (24h, MIC‐2). Trailing isolates efficacious in murine models. 49

T-2307

• FKS mutant C. albicans • Improved survival and reduced fungal burden in murine model • MIC-2 (no complete inh. using MIC-0)

50

Compound Company Development Model / Related (Notes) Status Study Ref.s ASP9726 Astellas Preclinical IPA Wiederhold AAC Accept (Novel second Pharmaceu., Animal 2015 March generation Japan models 9; Morikawa echinocandin) (guinea Bioorg Med Chem Lett Improved pig, rabbit) 2014; activity Efficacy & Petraitis PK Subcut. ICAAC 2012 M‐981; inj. Paderu ICAAC 2012 F‐822

51 Arikan ‐ New antifungals in the pipeline

ASP9726

ASP9726 5 mg/kg (but not 10 mg/kg) increased survival Paradoxical effect?

•(Decreased MIC) against echino‐R Candida •Glucan synthase more sensitive (2‐165 fold) to ASP9726 compared to CAS and MCF (comparable or better than MCF, sup to CAS)

Morikawa et al. Bioorg Med Chem Lett. 2014 ; 24:1172, Paderu et al. ICAAC 2012; M‐981 52

Compound Company Development Model/Study Related Ref.s (Notes) Status Biafungin Cidara Preclinical PK –animal ICAAC 2014 A‐ (CD101) Therapeutics, data 693, A‐694, F‐ (echinocandin) CA, USA (Phase 1 to IC, animal 1592, M‐1082 be started in model second half of 2015) (Tx & prevention of systemic Cand inf.)

•Prolonged half‐life ‐ ‐PK expected to allow once weekly IV tx. •Spectrum of activity & potency comparable to available echinocandins (ANID) (activity against echino‐R Cand & Itra‐R Asp)

53

Compound Development Model/Study Related Ref.s (Notes) Status AMB cochleates Preclinical Cand.& Asp.‐ Santangelo AAC 2000; Animal models Delmas AAC 2002; (oral), Sesana Mem Inst Leishmania Oswaldo Cruz 2011 chagasi (Macrophage model) Nanoparticle Preclinical Asp., nebulizer‐ Shirkhani formulations of based Nanomedicine 2015 AMB prophylaxis March16; Tang Int J ‐ Animal model Nanomedicine 2014 Nanoparticle Preclinical Cand.‐ Animal Qiu Int J formulations of model Nanomedicine 2015 itraconazole

54 Arikan ‐ New antifungals in the pipeline

Conclusions

• Discovery and development of new antifungal agents are challenging. • Few molecules are in clinical development. Antifungal drug spectrum offers rather limited choices. • While the development of new drugs is promising for a number of unmet needs, the efficacy of therapy particularly in immunosuppressed individuals is strongly affected by the host factors as well.

55

Thank you...