Gene Promoter Reporter Vector

Total Page:16

File Type:pdf, Size:1020Kb

Gene Promoter Reporter Vector Gene Promoter Reporter Vector User Manual Cat #: LR1XXX P/N 16116 Rev. A 050108 DRAFT September 3, 2008 9:21 pm GenePromoterReporterVectorTitle.fm Panomics, Inc. Gene Promoter Vector User Manual Copyright © Copyright 2008, Panomics, Inc. All rights reserved. Trademarks All other trademarks are of their respective owners. Citing Panomics in Publications When describing a procedure for publication using this product, we would appreciate it if you would refer to it as the Gene Promoter Vector Kit from Panomics. If a paper cites our product and is published in a research journal, the lead author(s) may receive a travel stipend for use at a technology conference or tradeshow by sending a copy of the paper to our technical support group at [email protected] or via fax at (510) 818-2610. Disclaimer Panomics, Inc. reserves the right to change its products and services at any time to incorporate technological developments. This manual is subject to change without notice. Although this manual has been prepared with every precaution to ensure accuracy, Panomics, Inc. assumes no liability for any errors or omissions, nor for any damages resulting from the application or use of this information. DRAFT September 3, 2008 9:21 pm GenePromoterReporterVectorTitle.fm Introduction Introduction Introduction Eukaryotic gene expression is regulated by a wide variety of developmental and environmental stimuli. First, an extracellular signaling molecule binds to a specific receptor. The signal is then transmitted through a series of molecular cascades, which activate or deactivate specific transcription factors (TFs) that regulate gene expression. The expression of any given gene is controlled by multiple transcription factors, which in turn are modulated by multiple signal transduction pathways. These pathways are also interconnected by molecular “cross-talk” (1–2). Activated TFs associate with the 5’ flanking region (promoter region) of the genes and RNA polymerase-mediated transcription is subsequently initiated. With Panomics' Gene Promoter Reporter Vectors, you can monitor and even quantify the promoter activity of 34 genes. Each Gene Promoter Reporter Vector contains a ~1 kB insert, corresponding to the 5'-flanking sequence located approximately 800 bp upstream of exon 1 of a specific human gene and extending to the first 50-200 bp of the untranslated region in exon 1 (Fig. 1, top). This insert is placed upstream of the luciferase reporter gene. Since the putative cis-acting enhancer elements are expected to exist in this cloned promoter region, the luciferase activity observed during the reporter assay more closely resembles the actual regulation of these genes within human cells. Binding of transcription factors in this region results in the expression of firefly luciferase, an enzyme capable of catalyzing a powerful bioluminescent reaction. Light emitted from the chemical reaction is directly proportional to the amount of expressed enzyme and thus the promoter activity of each gene. The backbone of the vector contains an ampicillin resistance gene for cloning purposes, an origin of replication, and an f1 origin for single-stranded DNA production (Fig. 1, bottom). Currently, Gene Promoter Reporter Vectors are available for 34 human genes. See www.panomics.com for an up-to-date list of all of the Gene Promoter Reporter Vectors. As a means of measuring promoter response in cells, the luciferase assay is simple, straightforward, and very effective. The reporter vector is first transfected into cells. After a limited amount of time, the cells are lysed and the substrate of luciferase, luciferin, is introduced into the cellular extract along with Mg2+ and excess ATP. Under these conditions, luciferase enzyme expressed by the reporter vector will catalyze the oxidative chemical reaction, the product of which can be detected and quantified by a luminometer or scintillation counter. The amount of light detected from the cell lysate correlates directly with the promoter activity of each human gene. Gene Promoter Reporter Vectors facilitate the study of promoter regulation mediated gene expression. With the aid of the reporter vectors, in vivo promoter activity in cell lines of various origins or those treated with a stimulus of interest can easily be compared. Cotransfect a vector expressing a gene of interest along with a Gene Promoter Reporter Vector to observe the effects of the gene of interest on signaling pathway activity. Gene Promoter Reporter Vector User Manual Page 3 Introduction Kozaks consensus 5’ flanking regionUTR in exon 1 Luc ORF +1 ATG ~800 bp 50–200 bp NheI Gene Promoter f1 ori enhancer BglII Ampr Gene Reporter Vector (~6 kb) Luciferase pUC on SV40 polyA Fig. 1: (Top) Panomics Gene Promoter Reporter Vector contains approximately 800 bp of 5' flanking region and 50-200 bp of untranslated region of exon 1 of a specifc human gene.. This ~1 kb region is located upstream of the start codon of luciferase gene. (Bottom) The vector backbone contains an ampicillin-resistance gene which allows ampicillin selection in E. coli, a pUC origin of replication for propagation in E. coli, and an f1 origin for single-stranded DNA production.. All of the Gene Reporter Vectors contain the Panomics signature sequence. These vectors are intended for research use only and should not be used commercially. Page 4 Gene Promoter Reporter Vector User Manual Materials Materials Materials Provided Gene Promoter Reporter Vector 20 µl of 500 ng/µl; 10 µg Control Reporter Vector 20 µl of 500 ng/µl; 10 µg * Sequence information is available on our website. Additional Items Items Required but not provided Required Item Source Transfection reagent FuGENE™ 6 Transfection Reagent (Roche, Cat. # 1 815 019) Reduced serum culture media Opti-MEM™ Reduced Serum Medium (Invitrogen, Cat. # 31985-062) Standard cell culture supplies Major Laboratory Supplier Luciferase reagent Luciferase Assay System (Promega, cat.# E150C) Luminometer Panomics Luminometer or equivalent Transfection The procedure is modified for using FuGENE 6 (Roche) in a 12-well culture plate. We do not recommend the use of other transfection methods, as this leads to reduced luciferase activity from the reporter. Guidelines for transfecting Gene Promoter Reporter Vector with FuGENE 6 Culture Vessel Volume of Vector DNA (µg) FuGENE 6 and dilution volume Reagent plating medium 96-well 100 µL 0.05 µg in 5 µL 0.1 - 0.3 mL 24-well 500 µL 0.2 µg in 20 µL 0.6 - 1.8 mL 12-well 1 mL 1.0 µg in 50 µL 1.2 - 3.6 mL 35-mm 2 mL 2.0 µg in 100 µL 3.0 - 9.0 mL 6-well 2 mL 2.0 µg in 100 µL 3.0 - 9.0 mL 60-mm 5 mL 5 µg in 200 µL 6.0 -20.0 mL 5 1 The day before transfection, plate 1-3x10 cells in 1 ml of their normal growth medium containing serum without antibiotics. Always plate cells in duplicate. This amount of cells should yield 50–80% confluence on the day of transfection. Note: Lower confluence is required to allow enough surface area for growth during the experiment period. Gene Promoter Reporter Vector User Manual Page 5 Materials 2 For each well of cells to be transfected, dilute 0.5 µg (1 µl) of the Gene Pro- moter Reporter Vector or the Control Vector with 50 µl of Opti-MEM I Reduced Serum Medium or serum-free culture media. Note: Each vector should be trans- fected in duplicate; one group of cells is for treatment and the other group is for control. 3 For each well, add 3 µl FuGENE 6 Reagent directly into 50 µl of Opti-MEM I Reduced Serum Medium or serum-free culture media, mix, and incubate for 5 min at room temperature, but no longer. This dilution can be prepared in bulk for multiple wells. 4 Combine the diluted Gene Promoter Reporter Vector with the diluted FuGENE 6 Reagent and mix gently. Incubate for 15-45 min at room temperature to allow DNA/transfection reagent complexes to form. Note: Do not allow undiluted FuGENE 6 Reagent to come into contact with plastic surfaces other than pipette tips. Once the FuGENE 6 Reagent is diluted, combine it with the diluted DNA within 45 min. 5 Add 100 µL of the DNA/transfection reagent complex directly to the complete growth media on cells and mix gently by rocking the plate back and forth. 6 Incubate the cells at 37°C in a C02 incubator, overnight. Note: It is possible to allow the transfection reaction to proceed for only 6-8 hrs. However, we recommend allowing 12 - 16 hr for gene expression, prior to treat- ment of cells. 7 After transfection, the media should be removed and; for an untreated sample, replaced with new media; for a treated sample, replace old media with new media that has been treated with the stimulus. When removing and replacing media, use caution to ensure that the cells remain attached to the bottom of the plate. 8 Keep the transfected cells at 37°C in a C02 incubator for the remainder of the incubation period. Inducer concentrations and duration of stimulation should be optimized for cell type and inducer reagent used. Page 6 Gene Promoter Reporter Vector User Manual Materials Collecting cells 1 After incubation, aspirate to completely remove the media from the culture plates. Be careful not to disturb the cells in the process. 2 Lyse the attached cells by adding lysis buffer (Promega, Luciferase Assay Sys- tem) to each well. Use approximately 50 µL per well for a 12-well plate; 100 µL per well for a 6-well plate. 3 To detach cells from the plate, immediately pipet the mixture up and down. 4. Transfer the cell lysate/buffer solution to a clean 1.5-ml microcentrifuge tube. Keep on ice or store at -20°C.
Recommended publications
  • Reporter Genes a Practical Guide M E T H O D S I N M O L E C U L a R B I O L O G Y™
    Reporter Genes A Practical Guide M E T H O D S I N M O L E C U L A R B I O L O G Y™ John M. Walker, SERIES EDITOR 436. Avian Influenza Virus, edited by 413. Protein Structure Prediction, Second Edition, Erica Spackman, 2008 edited by Mohammed Zaki and Chris Bystroff, 435. Chromosomal Mutagenesis, edited by 2008 Greg Davis and Kevin J. Kayser, 2008 412. Neutrophil Methods and Protocols, edited by 434. Gene Therapy Protocols: Vol. 2: Design and Mark T. Quinn, Frank R. DeLeo, Characterization of Gene Transfer Vectors, and Gary M. Bokoch, 2007 edited by Joseph M. LeDoux, 2008 411. Reporter Genes: A Practical Guide, edited by 433. Gene Therapy Protocols: Vol. 1: Production Don Anson, 2007 and In Vivo Applications of Gene Transfer 410. Environmental Genomics, edited by Vectors, edited by Joseph M. LeDoux, 2008 Cristofre C. Martin, 2007 432. Organelle Proteomics, edited by 409. Immunoinformatics: Predicting Immunogenicity Delphine Pflieger and Jean Rossier, 2008 In Silico, edited by Darren R. Flower, 2007 431. Bacterial Pathogenesis: Methods and 408. Gene Function Analysis, edited by Protocols, edited by Frank DeLeo and Michael Ochs, 2007 Michael Otto, 2008 407. Stem Cell Assays, edited by Vemuri C. Mohan, 430. Hematopoietic Stem Cell Protocols, 2007 edited by Kevin D. Bunting, 2008 406. Plant Bioinformatics: Methods and Protocols, 429. Molecular Beacons: Signalling Nucleic Acid edited by David Edwards, 2007 Probes, Methods and Protocols, edited by 405. Telomerase Inhibition: Strategies and Andreas Marx and Oliver Seitz, 2008 Protocols, edited by Lucy Andrews and 428. Clinical Proteomics: Methods and Protocols, Trygve O.
    [Show full text]
  • Construction of a Copper Bioreporter Screening, Characterization and Genetic Improvement of Copper-Sensitive Bacteria
    Construction of a Copper Bioreporter Screening, characterization and genetic improvement of copper-sensitive bacteria Puria Motamed Fath This thesis comprises 30 ECTS credits and is a compulsory part in the Master of Science With a Major in Industrial Biotechnology, 120 ECTS credits No. 9/2009 Construction of a Copper Bioreporter-Screening, characterization and genetic improvement of copper-sensitive bacteria Puria Motamed Fath, [email protected] Master thesis Subject Category: Technology University College of Borås School of Engineering SE-501 90 BORÅS Telephone +46 033 435 4640 Examiner: Dr. Elisabeth Feuk-lagerstedt Supervisor, name: Dr. Saman Hosseinkhani Supervisor, address: Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University Tehran, Iran Date: 2009-12-14 Keywords: Copper Bioreporter, Luciferase assay, COP operon, pGL3, E. Coli BL-21 ii Dedicated to my parents to whom I owe and feel the deepest gratitude iii Acknowledgment I would like to express my best appreciation to my supervisor Dr. S. Hosseinkhani for technical supports, and my examiner Dr. E. Feuk-lagerstedt for her kind attention, also I want to thank Mr. A. Emamzadeh, Miss. M. Nazari, and other students of Biochemistry laboratory of Tarbiat Modares University for their kind corporations. iv Abstract In the nature, lots of organism applies different kinds of lights such as flourescence or luminescence for some purposes such as defense or hunting. Firefly luciferase and Bacterial luciferase are the most famous ones which have been used to design Biosensors or Bioreporters in recent decades. Their applications are so extensive from detecting pollutions in the environment to medical and treatment usages.
    [Show full text]
  • Reporter Gene Assays
    TCA-017 Reporter Gene Assays Abstract foreign to mammalian cells, and are biologically active without post-translational modification. Luminescent reporter gene assays provide a simple, fast, non-isotopic, and highly sensitive alternative to The high quantum efficiency of luciferase enables the popular radioactive chloramphenicol detection of less than 0.01 attomoles of luciferase, acetyltransferase (CAT) assay. This paper describes making it possible to scale down the assay to the a reporter gene assay in which cells were transfected 96-well microplate format.1,2 Although the luciferin/ with the firefly luciferase gene, which was quanti- luciferase reaction is often thought of as a flash fied using an enhanced flash luciferin substrate chemistry, recent advances have extended the pho- and the TopCount Microplate Scintillation and ton kinetics by the use of coenzyme A as a substrate Luminescence Counter. Co-transfection with the in the oxidation of luciferin.3 The resulting enhanced ß-galactosidase gene may be included to control for flash eliminates the need for elaborate reagent inter-assay transfection efficiency. Both of these injection devices. luminescent reporters can be quantified without reagent injection devices. The signal decays only slightly during the time required to read a microplate, Co-transfection with a second reporter gene is often and can be easily corrected for the decay by tandem performed to normalize transfection efficiency processing on TopCount. between assays. The ß-galactosidase gene is ideal for this application. Chemiluminescent substrates for ß- galactosidase are sensitive enough to allow detec- Introduction tion at low transfection efficiency, are available in compatible plasmid vectors, and are easily adaptable The use of reporter genes is a fundamental tool of 4 molecular biologists.
    [Show full text]
  • Important Vector Factors for Gene Expression Technical Reference Guide
    BioResearch Important Vector Factors for Gene Expression Technical Reference Guide vectors expressing the same luciferase gene in different backbones and expression cassettes and obtained highly discriminative expres- sion levels. In this guideline, we show the most important aspects to be considered when choosing an expression vector and their impact on your experimental results. 1. Promoter Strength Introduction Is your promoter appropriate for the cell type that you are working with? Our Scientific Support Team is commonly asked: “Why don’t I get the Table 1 describes the promoter strengths as a relative percent of the same expression level of my gene if I use various vector backbones?” strength of the CMV promoter for various cells for which Lonza has There are many components to a vector that can have an effect on the Optimized Protocols. The CMV promoter activity is set to 100% based level of gene expression. Below you will find the 10 most important on their CAT assay values from the referenced publications. Although factors to consider when looking at vectors. CMV is a strong promoter in many mammalian cells, another promoter The selection of an appropriate expression vector is crucial for efficient may give stronger expression in your cells (e.g., promoter SV40 in gene expression. Just take a look at Figure 1. We tried 10 different BHK-21 cells). n 1600 1400 1200 1000 800 [% of pGL3-CMV at 24 h] 24 at pGL3-CMV [% of 600 400 Relative luciferase-expressio Relative 200 0 Control Program Only pGL3-Control pGL3-CMV pmax Cloning™ pSG5 pcDNA3.1 pFP pIRES-MCS B pcDNA4 HisMax pCMVbeta pCMV-TNT 4 hours 24 hours 48 hours n 2000 1500 1000 500 0 Control Program Only pGL3-Control pGL3-CMV pmax Cloning™ pSG5 pcDNA3.1 pFP pIRES-MCS B pcDNA4 HisMax pCMVbeta pCMV-TNT [% of pGL3-CMV at 24 h] 24 at pGL3-CMV [% of 4 hours 24 hours 48 hours Relative luciferase-expressio Relative Figure 1: Luciferase expression levels depend on vector backbones.
    [Show full text]
  • Robust Normalization of Luciferase Reporter Data
    Technical Note Robust Normalization of Luciferase Reporter Data Andrea Repele † and Manu * Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA * Correspondence: [email protected] † Current address: JMB—Center for Immunity and Immunotherapies, Seattle Children’s Hospital, Seattle, WA 98105, USA. Received: 17 June 2019; Accepted: 22 July 2019; Published: 25 July 2019 Abstract: Transient Luciferase reporter assays are widely used in the study of gene regulation and intracellular cell signaling. In order to control for sample-to-sample variation in luminescence arising from variability in transfection efficiency and other sources, an internal control reporter is co-transfected with the experimental reporter. The luminescence of the experimental reporter is normalized against the control by taking the ratio of the two. Here we show that this method of normalization, “ratiometric”, performs poorly when the transfection efficiency is low and leads to biased estimates of relative activity. We propose an alternative methodology based on linear regression that is much better suited for the normalization of reporter data, especially when transfection efficiency is low. We compare the ratiometric method against three regression methods on both simulated and empirical data. Our results suggest that robust errors-in-variables (REIV) regression performs the best in normalizing Luciferase reporter data. We have made the R code for Luciferase data normalization using REIV available on GitHub. Keywords: luciferase reporter; transfection efficiency; normalization; gene regulation; promoter; enhancer 1. Introduction Transient reporter assays are an important and widely used tool in the study of gene regulation [1–4], intracellular cell signaling [5–7], and other areas of molecular, cellular, and developmental biology [8–10].
    [Show full text]
  • I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
    BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed.
    [Show full text]
  • Ab253372 Β-Glucuronidase (GUS) Reporter Gene Activity Detection Kit
    Version 1 Last updated 14 June 2020 ab253372 β-Glucuronidase (GUS) Reporter Gene Activity Detection Kit View β-Glucuronidase (GUS) Reporter Gene Activity Detection Kit datasheet: www.abcam.com/ab253372 (use www.abcam.cn/ab253372 for China, or www.abcam.co.jp/ab253372 for Japan) For the measurement of β-Glucuronidase (GUS) activity in plant tissue. This product is for research use only and is not intended for diagnostic use. Copyright © 2020 Abcam. All rights reserved Table of Contents 1. Overview 1 2. Materials Supplied and Storage 2 3. Materials Required, Not Supplied 3 4. General guidelines, precautions, and troubleshooting 3 5. Reagent Preparation 4 6. Assay Procedure 5 7. Typical Data 7 8. Notes 9 Technical Support 10 Copyright © 2020 Abcam. All rights reserved 1. Overview Reporter genes are widely used as “markers” for analysis in gene regulation and localization, as well as for analysis of mutation altered genes. Expression of reporter genes can be measured by immunological assay, biochemical activity assay or by histochemical staining of cells or tissues. The β-glucuronidase (GUS) enzyme from E. coli (EC 3.2.1.31) has been well documented to provide desirable characteristics as a marker gene in transformed plants. The GUS reporter gene system has many advantages including stable expression of E. coli GUS enzyme, no interference with normal plant metabolism, and low intrinsic GUS activity in higher plants. The enzyme is also capable of tolerating amino-terminal additions, making it useful for study of plant organelle transport. Plants or other cell types are extracted with GUS extraction buffer. The extracted β-glucuronidase hydrolyzes the 4-MUG to the fluorescent compound 4-MU (pKa 8.2) and glucuronic acid.
    [Show full text]
  • Pflash Phagemids Technical Manual
    - Pg. 1 I. Description The pFlash™ phagemids are intendedfor the quantitative analysis of putativecis-elements and transacting factorsthat regulate eukaryoticgene regulation. The pFlash™ phagemids carry the coding region of the firefly (Photinuspyralis ) luciferase gene which is usedto monitor transcriptional activity in transfected eukaryotic cells. The assay of this reportergene is rapid, sensitive and quantitative and represents the efficiencyof transcription initiationutilizing the putative cis-elements cloned upstream/downstreamof the reporter gene. In addition the pFlash™ phagemids contain numerous features that facilitate the characterizationand mutagenesis of the putativecis-elements beingstudied. II. General Considerations A. Structure and Function There are three types of pFlash™ vectors: pFlash I™, pFlash II™, and SV40-pFlash™. Each pFlash™ phagemid carries the luciferase gene (luc) followedby the SV40 t intron containing the polyadenylation [poly(A)] signals which is the generic donor forthese signals and are used by every reporter gene vector that is currently available commercially. However the pFlash™ phagemids are distinguished by the fact that it is the only set in which the cryptic APl sequence (TGAGTCA) which is present in the wild type SV40 t intron has been specifically mutated by site-directed mutagenesis into an EcoRI (GAATTC) restriction site. The APl sequence is a strong eukaryotic enhancer element that is recognized by the ubiquitous Jun-Fos transcription factors as well as severalothers. The presence of this crypticenhancer in the t intronresults in spurious reporter gene expression and high background activity that has the potential to mask or otherwise interfere with the analysis of putative cis-elements that are being cloned upstream. The pFlash™ phagemids in which this cryptic site has been mutated are free of such activity and consistently exhibit extremely low signal-noise ratios.
    [Show full text]
  • Bioluminescent Reporter Gene Assays Protocols and Applications
    |||||||| 8Bioluminescent Reporter Gene Assays PR CONTENTS I. Introduction 1 O A. Luminescence versus Fluorescence 1 B. Bioluminescent Reporters 2 T OCOLS C. Applications 3 II. Luciferase Genes and Vectors 4 A. Biology and Enzymology 4 B. Gene Optimization 6 C. pGL4 Luciferase Reporter Vectors 8 D. pNL Vectors 8 & III. Luciferase Reporter Assays and Protocols 8 A. Single-Reporter Assays 9 APPLIC B. Dual-Reporter Assays 10 C. Live-Cell Substrates 12 D. Bioluminescent Reporters to Normalize for Changes in Cell Physiology 12 E. Bioluminescent Reporters to Monitor RNA Interference 13 A F. Bioluminescent Reporters in Cell-Signaling Assays 13 TIONS G. Luciferase Reporter Cell Lines 15 H. Bioluminescent Reporters to Study Protein Dynamics 15 I. Promega Reporter Vectors and Assays 16 IV. Getting the Most Out of Your Genetic Reporter GUIDE Assays 16 A. Introduction 16 B. Choice of Reporter Gene and Assay 16 C. Reporter Construct Design 16 D. Controls 17 E. Transfection Parameters 17 F. Assay Timing 17 G. Cells and Cell Culture Conditions 18 H. Special Considerations for High-Throughput Assays 18 V. References 19 VI. Vector Tables 20 Protocols & Applications Guide www.promega.com rev. 4/15 |||||||| 8Bioluminescent Reporter Gene Assays PR I. Introduction Fundamentally, a reporter assay is a means to translate a biomolecular effect into an observable parameter. While Genetic reporter systems have contributed greatly to the there are theoretically many strategies by which this can study of eukaryotic gene expression and regulation. O be achieved, in practice the reporter assays capable of Although reporter genes have played a significant role in delivering the speed, accuracy and sensitivity necessary T numerous applications, both in vitro and in vivo, they are for effective screening are based on photon production.
    [Show full text]
  • Pgl3 Luciferase Reporter Vectors Technical Manual TM033
    TECHNICAL MANUAL pGL3 Luciferase Reporter Vectors Instructions For Use of Products E1741, E1751, E1761 and E1771 Revised 6/15 TM033 pGL3 Luciferase Reporter Vectors All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Manual. E-mail Promega Technical Services if you have questions on use of this system: [email protected] 1. Description .........................................................................................................................................2 2. Product Components and Storage Conditions ........................................................................................2 3. pGL3 Vector Maps and Sequence Reference Points ................................................................................2 3.A. pGL3-Basic Vector ......................................................................................................................3 3.B. pGL3-Enhancer Vector ................................................................................................................4 3.C. pGL3-Promoter Vector ................................................................................................................5 3.D. pGL3-Control Vector ..................................................................................................................6 4. Cloning Methods .................................................................................................................................7
    [Show full text]
  • Reporter Gene
    Reporter gene Programme: B.Sc (H) Botany Course Title: Plant Biotechnology Course code: BOTY 3014 Prof. Shahana Majumder Department of Botany Mahatma Gandhi Central University, Motihari Disclaimer • These materials are taken/borrowed/modified/compiled from various sources like research articles and freely available internet websites, and are meant to be used solely for the teaching purpose in a public university, and solely for the use of UG students. Selection of a transgene • The use of a marker gene in a transformation process aims to select transformed cells that is expressing the gene of Interest. • These selectable marker genes are often known as Reporter gene • Such genes are called reporters because the characteristics they confer on organisms expressing them are easily identified and measured. Marker genes for selection enable the identification and selection of genetically modified cells. http://www.genopomii.un ina.it/genohort/files/Lezio ne_15_Plant%20cell%20s uspensions.pdf Tissue culture Treat with appropriate method to detect the Explant transgenic cells Agro inoculation Genetically modified cells • To introduce a reporter gene into an organism, scientists place the reporter gene and the gene of interest under the control of same promoter in the same DNA construct . • This typically involves removing the stop codon from a cDNA sequence coding for the first protein, then appending the cDNA sequence of the second protein in frame through ligation . Spacer Gene 1 Protein 2 Spacer Protein 1 http://2010.igem.org/Team:BIOTEC_Dresden/Fusion_Protein • Here often a linker (or "spacer") peptides are also added, which make it more likely that the proteins fold independently and behave as independent proteins • It is important to use a reporter gene that is not natively expressed in the cell or organism under study, since the expression of the reporter is being used as a marker for successful uptake of the gene of interest.
    [Show full text]
  • Regulation of Gene Expression
    REGULATION OF GENE EXPRESSION Objective: to understand how genes are regulated in prokaryotes (lower organisms) and eukaryotes (higher organisms) To achieve the objective: study the expression of reporter genes in transgenic organisms What are reporter genes? What are transgenic organisms? What are reporter genes? Reporter genes are protein-coding genes whose expression in the cell can be quantified by the techniques of protein detection. What does this mean? Polylinker lacZ gene TOPO Intact lacZ gene Agar plate containing ßgal + Xgal Blue color LB + kan + Xgal Thus, the blue color “reports” to you the presence of an intact lacZ gene. In other words, lacZ is a reporter gene. Other reporter genes include: luxE gene in photorhabdus luminescens, emits light gfp gene in jellyfish, expression patterns turn green gusA gene in E. coli, expression patterns turn blue What are transgenic organisms? Organisms carrying any piece of foreign DNA that researchers have inserted into the genome through the manipulation of germ cells (gametes) or early embryonic stages, are called transgenic organisms. In today’s experiment, Arabidopsis seedlings are transgenic because they carry the gusA gene of E. coli origin. The concept of operon In bacterial cells, operon is a cluster of structural genes (coding region) along with the adjacent regulatory region that controls the transcription of those genes. The lactose operon is an operon required for the metabolism of lactose in E. coli. Its structure is shown below. Regulatory region Structural region RNA polymerase Promoter Lac I gene Promoter Operator Lac Z gene Lac Y gene Lac A gene Codes for repressor protein How is the metabolism of lactose regulated in E.
    [Show full text]