AQUATIC MACROINVERTEBRATE and DIATOM SURVEYS in TETLIN NATIONAL WILDLIFE REFUGE, AK Final Report December 2012

Total Page:16

File Type:pdf, Size:1020Kb

AQUATIC MACROINVERTEBRATE and DIATOM SURVEYS in TETLIN NATIONAL WILDLIFE REFUGE, AK Final Report December 2012 AQUATIC MACROINVERTEBRATE AND DIATOM SURVEYS IN TETLIN NATIONAL WILDLIFE REFUGE, AK Final Report December 2012 Prepared by: Daniel Rinella, Daniel Bogan, and Rebecca Shaftel Alaska Natural Heritage Program University of Alaska Anchorage Beatrice McDonald Hall 3211 Providence Dr. Anchorage, AK 99508 Tetlin Macroinvertebrate and Diatom Surveys Table of Contents INTRODUCTION 1 METHODS 1 Stream habitat measurements 3 Macroinvertebrate and diatom sampling 4 Sample processing 4 Data analysis 5 RESULTS AND DISCUSSION 6 CONCLUSIONS 16 REFERENCES 17 i Tetlin Macroinvertebrate and Diatom Surveys Tables Table 1. Selected habitat characteristics for Desper, Gardiner, and Scottie Creeks. ........................................ 8 Table 2. Average taxa richness for macroinvertebrate and diatom quantitative and multi-habitat samples over the four year sampling period. Quantitative samples were pooled to calculate richness. ................... 8 Table 3. Jaccard (persistence) and Bray-curtis (stability) distances for macroinvertebrate communities from Desper, Gardiner, and Scottie creeks based on three inter-annual comparisons from 2007 to 2010. ...............................................................................................................................................................................................15 Table 4. Jaccard (persistence) and Bray-curtis (stability) distances for diatom communities from Desper, Gardiner, and Scottie creeks based on three inter-annual comparisons from 2007 to 2010. .......................15 Figures Figure 1. Sampling sites in Tetlin National Wildlife Refuge. ....................................................................2 Figure 2. Photos of Desper Creek (A), Gardiner Creek (B), and Scottie Creek (C). ...................................7 Figure 3. Hydrologic conditions at the time of sampling as indicated by stage and discharge readings for Desper, Gardiner, and Scottie creeks. ..................................................................................................9 Figure 4. Macroinvertebrate abundances from the quantitative samples for the six most frequently encountered taxa in Desper, Gardiner, and Scottie creeks from 2007 to 2010. ..................................... 11 Figure 5. Diatom abundances from the quantitative samples for the six most frequently encountered taxa in Desper, Gardiner, and Scottie creeks from 2007 to 2010. ......................................................... 12 Figure 6. NMS ordination for macroinvertebrates at Desper, Gardiner, and Scottie creeks over four year sampling period. ............................................................................................................................... 13 Figure 7. NMS ordination for diatoms at Desper, Gardiner, and Scottie creeks over four year sampling period. .............................................................................................................................................14 Appendices Appendix 1. Macroinvertebrate taxa list Appendix 2. Diatom taxa list ii Tetlin Macroinvertebrate and Diatom Surveys INTRODUCTION This report summarizes the results from macroinvertebrate and diatom surveys conducted in Desper, Gardiner, and Scottie creeks; lowland streams in Tetlin National Wildlife Refuge, interior Alaska. These three streams were sampled repeatedly during the summers of 2007 through 2010. The objectives of this study were to characterize the stream biological communities for streams in the Tetlin Refuge where data currently does not exist. Sites were sampled over several years in order to describe inter-annual changes in community composition. Macroinvertebrates and diatoms have been used in biomonitoring to indicate the quality of the aquatic ecosystems in which they reside. Since they integrate attributes of their chemical and physical environments over their lifespans, taxa presence and abundance can be better predictors of past environmental conditions than snapshot water quality measurements. Potential disturbances to streams in this region include climate change, development along the Alaska Highway system, and the proposed Alaska natural gas pipeline. In addition to describing macroinvertebrate and diatom community composition, the inter- annual persistence and stability of macroinvertebrate and diatom assemblages are important considerations for monitoring programs. Persistence measures the presence or absence of individual taxa over time, while stability includes both the presence/absence and the abundance of taxa over time. Aquatic habitats characterized by high community persistence and stability facilitate the detection of ecological changes over time. Low persistence and stability among macroinvertebrate communities in montane streams of Denali National Park, also in interior Alaska, was found to limit their applicability for ecological monitoring (Milner et al. 2006). Macroinvertebrate persistence and stability in the Denali streams was related to winter snow depth and channel stability (Milner et al. 2006), factors which may also affect streams in the Tetlin refuge. To our knowledge, no prior published studies have examined persistence and stability among diatom communities. METHODS Sites were selected based on their accessibility via the Alaska Highway. Figure 1 shows the location of the three sampling sites within the Tetlin National Wildlife Refuge. 1 Tetlin Macroinvertebrate and Diatom Surveys Figure 1. Sampling sites in Tetlin National Wildlife Refuge. 2 Tetlin Macroinvertebrate and Diatom Surveys Stream habitat measurements Stream habitat measurements were collected in the first year of sampling (2007) to characterize differences in channel morphology, riparian vegetation, and substrate composition between the three streams. We conducted habitat assessments using protocols from EPA’s Environmental Monitoring and Assessment Program (EMAP, Kaufman and Robinson 1998) to characterize in-stream and riparian habitat at each of 11 evenly spaced transects along the stream reach. Each stream reach was 150 m in length. Measurements collected at each transect included channel wetted width, bankfull width, bank height, bank angle, and bank undercut distance. We measured riparian canopy coverage with six densiometer readings along each transect. We recorded water depth, substrate size class, and embeddedness at five points along each transect. To characterize fish cover we estimated the extent of filamentous algae, macrophytes, big and small woody debris, live trees or roots, overhanging vegetation, undercut banks, and boulders at each transect using five areal cover classes (0%, <10%, 10-40%, 40-75%, or >75%). Between each of the 11 transects, we counted pieces of large woody debris within and above the bankfull channel according to several size classes. We characterized riparian vegetation cover separately for canopy, understory, and ground cover along the entire stream reach using five areal cover classes (0%, <10%, 10-40%, 40-75%, or >75%) and several types (deciduous, coniferous, mixed, or none). To characterize channel slope and sinuosity, we recorded the compass azimuth (aspect) and channel slope between each pair of transects. The U.S. Fish and Wildlife Service collects continuous hydrologic stage measurements at each of these creeks in order to estimate discharge, in addition to collecting periodic water quality samples throughout the year. For Scottie and Desper creeks, stage measurements were provided for each sampling date and for Gardiner Creek, preliminary discharge measurements were provided. These measurements will enable comparisons within each creek between the hydrologic conditions and the aquatic biological communities over the four year sampling period. A total of 15, 17, and 18 water quality samples were collected at Desper, Gardiner, and Scottie creeks from June 2006 to September 2009. The suite of constituents measured included hardness, pH, nutrients, dissolved organic carbon, specific conductance, numerous metals, and various inorganic salts. For this report, water quality parameters known to affect stream biological communities were summarized for the three streams to qualitatively describe differences in their chemistry. 3 Tetlin Macroinvertebrate and Diatom Surveys Macroinvertebrate and diatom sampling For both macroinvertebrates and diatoms we collected five quantitative subsamples from the benthic habitat in order to characterize variation in taxa abundance within a stream. Stream substrates were targeted for the quantitative subsamples so that the sampling area could be easily defined and measured, which is more difficult when sampling other habitats, such as streambanks or overhanging vegetation. Quantitative macroinvertebrate samples were collected using either a modified Surber sampler with 350-µm mesh in shallow water or an Eckman grab for deep water with fine substrates. Quantitative diatom samples were collected by scrubbing a fixed area (delineated by a bedrock sampler) on submerged woody snags or by skimming the top layer of streambed sediments (delineated by a sediment sampler). We also collected semi-quantitative multi-habitat samples of macroinvertebrates and diatoms that we expected might provide a more comprehensive characterization of the biological communities. For both macroinvertebrates and diatoms, the multi-habitat sample was composed of 20 subsamples taken throughout the stream reach. All substrate types (i.e., sand/fine substrates, gravel/cobble substrates, undercut streambanks, woody
Recommended publications
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Ordem Surirellales (Bacillariophyceae) No Estado De São Paulo: Levantamento Florístico
    Krysna Stephanny de Morais Ferreira Ordem Surirellales (Bacillariophyceae) no Estado de São Paulo: levantamento florístico Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo como parte dos requisitos para obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, Área de Concentração Plantas Avasculares em Análises Ambientais. SÃO PAULO 2016 Krysna Stephanny de Morais Ferreira Ordem Surirellales (Bacillariophyceae) no Estado de São Paulo: levantamento florístico Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo como parte dos requisitos para obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, Área de Concentração Plantas Avasculares em Análises Ambientais. ORIENTADOR: PROF. DR. CARLOS EDUARDO DE MATTOS BICUDO i ii À minha mãe Aurilene e ao meu pai Edilson, família e amigos, dedico. iii Tudo que é seu encontrará uma maneira de chegar até você. (Chico Xavier) iv AGRADECIMENTOS Em primeiro lugar gostaria de agradecer a Deus por ser minha base e nunca ter me abandonado nos momentos difíceis. Ao meu queridíssimo Prof. Dr. Carlos Eduardo de Mattos Bicudo pela confiança, incentivo e apoio. Obrigada, de coração, por tudo que me foi passado, pelos conhecimentos científicos e pelas agradáveis conversas e conselhos. Obrigada por fazer mais leve essa caminhada e pelas palavras certas nos momentos de “aperreio”. Obrigada mesmo, de verdade. À Profª Drª Denise de Campos Bicudo pelo conhecimento a mim passado, pelos conselhos e por ser essa pessoa simpática, amável e gentil que sempre nos recebe de braços abertos. À Profª Drª Carla Ferragut por todo conhecimento e experiência a nós passada em laboratório, nas aulas e no dia-a-dia.
    [Show full text]
  • Protistology Diatom Assemblages of the Brackish Bolshaya Samoroda
    Protistology 13 (4), 215–235 (2019) Protistology Diatom assemblages of the brackish Bolshaya Samoroda River (Russia) studied via light micro- scopy and DNA metabarcoding Elena A. Selivanova, Marina E. Ignatenko, Tatyana N. Yatsenko-Stepanova and Andrey O. Plotnikov Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg 460000, Russia | Submitted October 15, 2019 | Accepted December 10, 2019 | Summary Diatoms are highly diverse and widely spread aquatic photosynthetic protists. Studies of regional patterns of diatom diversity are substantial for understanding taxonomy and biogeography of diatoms, as well as for ecological perspectives and applied purposes. DNA barcoding is a modern approach, which can resolve many problems of diatoms identification and can provide valuable information about their diversity in different ecosystems. However, only few studies focused on diatom assemblages of brackish rivers and none of them applied the genetic tools. Herein, we analyzed taxonomic composition and abundance of diatom assemblages in the brackish mixohaline Bolshaya Samoroda River flowing into the Elton Lake (Volgograd region, Russia) using light microscopy and high-throughput sequencing of the V4 region of the 18S rDNA gene amplicons. In total, light microscopy of the samples taken in 2011–2014 and 2018 allowed to distinguish 39 diatom genera, represented by 76 species and infraspecies taxa. Twenty three species of diatoms were recorded in the river for the first time. Next-generation sequencing revealed a larger number of diatom taxa (26 genera and 47 OTUs in two samples vs. 20 genera and 37 species estimated by light microscopy). As a result, sequences of Haslea, Fistulifera, Gedaniella were recorded in the river for the first time.
    [Show full text]
  • Marine Phytoplankton Atlas of Kuwait's Waters
    Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas of Kuwait’s of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie ISBN: 99906-41-24-2 Kuwait Institute for Scientific Research P.O.Box 24885, Safat - 13109, Kuwait Tel: (965) 24989000 – Fax: (965) 24989399 www.kisr.edu.kw Marine Phytoplankton Atlas of Kuwait’s Waters Published in Kuwait in 2009 by Kuwait Institute for Scientific Research, P.O.Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2009 All rights reserved. ISBN 99906-41-24-2 Design by Melad M. Helani Printed and bound by Lucky Printing Press, Kuwait No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 Kuwait Institute for Scientific Research - Marine phytoplankton Atlas Kuwait Institute for Scientific Research Marine Phytoplankton Atlas of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie Kuwait Institute for Scientific Research Kuwait Kuwait Institute for Scientific Research - Marine phytoplankton Atlas 3 TABLE OF CONTENTS CHAPTER 1: MARINE PHYTOPLANKTON METHODOLOGY AND GENERAL RESULTS INTRODUCTION 16 MATERIAL AND METHODS 18 Phytoplankton Collection and Preservation Methods 18 Sample Analysis 18 Light Microscope (LM) Observations 18 Diatoms Slide Preparation
    [Show full text]
  • Surirella Wulingensis Sp. Nov. and Fine Structure of S. Tientsinensis Skvortzov (Bacillariophyceae) from China
    Fottea, Olomouc, 19(2): 151–162, 2019 151 DOI: 10.5507/fot.2019.006 Surirella wulingensis sp. nov. and fine structure of S. tientsinensis Skvortzov (Bacillariophyceae) from China Bing Liu1*, Saúl Blanco2,3, Luc Ector4, Zhu–xiang Liu1 & Juan Ai1 1College of Biology and Environmental Science, Jishou University, Jishou 416000, China; *Corresponding author e–mail: [email protected] 2Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, España 3Laboratorio de diatomología y calidad de aguas, Instituto de Investigación de Medio Ambiente, Recursos Naturales y Biodiversidad, La Serna 58, 24007, León, España 4Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation, 41 rue du Brill, L–4422 Belvaux, Luxembourg Abstract: Two Surirella species from China are studied using light and scanning electron microscopy. Surirella wulingensis sp. nov., discovered from Li River (located in Wuling Mountains, China), bears five undulations from pole to pole throughout the whole valve diminution series and parallel valve margins, which differ from other similar taxa. Based on the observations of the fine structure, an amended description is provided for S. tientsinensis which possesses a unique character within the genus Surirella: rounded and rimmed outer openings of areolae. Three new morphological terms are proposed: costa–stria bundle (CSB), over–fibula costa (OFC), and mantle sinking against a fibula (MSAF), which can be used for describing someSurirella taxa more succinctly and explicitly including these taxa in this study. Key words: corresponding relationship, diatom, fine structure, new species, rimmed opening Introduction Surirella sensu stricto, they are still a distinctive group with unique valve surface undulations from pole to Surirella Turpin is a diversified diatom genus that in- pole.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Algologie, 2018, 39 (1): 35-62 © 2018 Adac. Tous droits réservés Epithemia hirudiniformis and related taxa within the subgenus Rhopalodiella subg. nov.in comparison to Epithemia subg. Rhopalodia stat nov. (Bacillariophyceae) from East Africa Christine CoCQUYt a* Wolf-Henning kUSBer b &regine JAHn b aBotanic Garden meise, Nieuwelaan 38, BE-1860 meise, Belgium bBotanischerGarten und BotanischesMuseum Berlin, Freie UniversitätBerlin, königin-luise-Str.6-8, D-14195 Berlin, Germany Abstract – epithemia hirudiniformis and three morphologically related taxa, described in rhopalodia by O. Müller from material collected in East Africa at the end of the 19th and the beginning of the 20th century were re-evaluated and lectotypes designated. rhopalodiella as anew subgenus is proposed which refines O. Müller’s infrageneric classification and to which all these taxa belong. In addition, the type of epithemiarhopala,described by Ehrenbergfrom Egypt, was studied to examine the assumed synonymy,introduced by Hustedt, with some of Müller’s species. This study,using light and scanning electron microscopy,was not only based on historic material but also more recent material from Africa, including samples from the Island of Reunion from which the new species epithemia vandevijveri is described. The distribution of epithemia subg. rhopalodiella,known to be restricted to tropical Africa, is discussed based on literature data and own observations. Corresponding to recent molecular-based studies, rhopalodia is given anew status as subgenus. Classification /diatoms /East Africa /new species /new subgenera / Rhopalodia / taxonomy /typification INTRODUCTION rhopalodia O. Müll. taxa are, like the representatives of the genus Iconella Jurily,formerly subsumed under the genus name Surirella Turpin (Ross, 1983; Jahn et al.,2017), typical components of the East African Rift diatom flora.
    [Show full text]
  • Phytoplankton in a Tropical Estuary, Northeast Brazil: Composition and Life Forms
    11 3 1633 the journal of biodiversity data April 2015 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 11(3): 1633, April 2015 doi: http://dx.doi.org/10.15560/11.3.1633 ISSN 1809-127X © 2015 Check List and Authors Phytoplankton in a tropical estuary, Northeast Brazil: composition and life forms Eveline P. Aquino*, Gislayne C. P. Borges, Marcos Honorato-da-Silva, José Z. O. Passavante and Maria G. G. S. Cunha Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 123, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil * Corresponding author. Email: [email protected] Abstract: We aimed verify the composition of the oscillations in the environmental, which can resuspend phytoplankton community and this life forms that or deposit cells on the bottom. The knowledge of occur in the Capibaribe River estuary, Pernambuco, composition and life forms of the biotic communities is Brazil. This is a highly impacted ecosystem by anthropic a necessary tool to understand the mechanism and the activities. We collected samples of the phytoplankton ecological importance of aquatic ecosystems (Eskinazi- community at three stations, during three months of Leça et al. 2004; Cloern and Jassby 2010). each season: dry, from October to December 2010; rainy, In this context, our study aimed to analyze the from May to July 2011. We collected samples during the composition of the phytoplankton community and the low and high tide, at the spring tide. We classified the main life forms of species occurring in the Capibaribe species based on life forms. We identified 127 taxa, and River estuary (Pernambuco), which is an important the majority of species were freshwater planktonic form aquatic body in Northeast Brazil.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.
    [Show full text]
  • Differentiating Iconella from Surirella (Bacillariophyceae): Typifying Four Ehrenberg Names and a Preliminary Checklist of the African Taxa
    A peer-reviewed open-access journal PhytoKeys 82: 73–112 (2017)DifferentiatingIconella from Surirella (Bacillariophyceae)... 73 doi: 10.3897/phytokeys.82.13542 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Differentiating Iconella from Surirella (Bacillariophyceae): typifying four Ehrenberg names and a preliminary checklist of the African taxa Regine Jahn1, Wolf-Henning Kusber1, Christine Cocquyt2 1 Botanischer Garten und Botanisches Museum Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany 2 Botanic Garden Meise, Nieuwelaan 38, 1680, Meise, Belgium Corresponding author: Regine Jahn ([email protected]) Academic editor: K. Manoylov | Received 4 May 2017 | Accepted 31 May 2017 | Published 3 July 2017 Citation: Jahn R, Kusber W-H, Cocquyt C (2017) DifferentiatingIconella from Surirella (Bacillariophyceae): typifying four Ehrenberg names and a preliminary checklist of the African taxa. PhytoKeys 82: 73–112. https://doi.org/10.3897/ phytokeys.82.13542 Abstract To comply with the new phylogeny within the Surirellales as supported by molecular and morphological data, re-evaluations and re-combinations of taxa from and within the genera Surirella, Cymatopleura, and Stenopterobia and with the re-established genus Iconella are necessary. Since the African diatom flora is rich with taxa from these genera, especially Iconella, and the authors have studied these taxa recently, describing also new taxa, a preliminary checklist of African Iconella and Surirella is here presented. 94 names are contained on this list. 57 taxa have been transferred to Iconella; 55 taxa were formerly ranked within Surirella and two taxa within Stenopterobia. 10 taxa have stayed within Surirella and six taxa have been transferred from Cymatopleura to Surirella.
    [Show full text]
  • Diatom Species Richness in Algal Flora of Pamir, Tajikistan
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by European Scientific Journal (European Scientific Institute) European Scientific Journal January 2018 edition Vol.14, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Diatom Species Richness in Algal Flora of Pamir, Tajikistan Toirbek Niyatbekov, PhD. Institute of Botany, Plant Physiology and Genetics., Dushanbe, Republic of Tajikistan Sophia Barinova, Prof. Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel Doi: 10.19044/esj.2018.v14n3p301 URL:http://dx.doi.org/10.19044/esj.2018.v14n3p301 Abstract The main objective of this study was to quantify the diatom floral richness and analyze the diversity structure in Pamir aquatic habitats. We revealed 455 species (552 with infraspecific taxa) of diatom algae compiled from reference studies in 1930-1983 that was done for the first time, and our data after many floristic surveys conducted in the field during 2000-2015. Floristic analysis of the total species richness revealed 65 rare and 22 species new for Pamir algal flora, and has allowed us to identify prevailed Classes, Orders, and Families in the diatoms. Only four genera are prevailing and contain about 30% of total richness. The Pinnularia species from them are representing extremely large numbers (39). They prefer fresh, clear, circumneutral-water habitats in natural aquatic objects with developed phytoperiphytonic communities, included many rare species and can be peculiarities of the Pamir diatom flora. Keywords: Diatoms, Algal flora, Pamir, Tajikistan Introduction Freshwater algae are widely used in ecological assessment of water quality (Stevenson, 2014). It is very important to know about algal diversity in inland waters because most of algal species can be used as environmental indicators.
    [Show full text]
  • Notulae Algarum No. 10 (17 August 2016 ) ISSN 2009-8987 1
    Notulae algarum No. 10 (17 August 2016 ) ISSN 2009-8987 Nomenclatural transfers associated with the phylogenetic reclassification of the Surirellales and Rhopalodiales Elizabeth C. Ruck1, Teofil Nakov1, Andrew J. Alverson1 & Edward C. Theriot2 1Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, Arkansas 72701, U.S.A. 2Department of Integrative Biology, University of Texas at Austin, 1 University Station (A6700), Austin, Texas 78712 U.S.A. The Surirellales and Rhopalodiales are large orders of canal-raphe-bearing diatoms (Bacillariophyceae) whose monophyly is strongly supported (Ruck & Theriot 2011). Despite differences in taxon sampling, molecular (Ruck & Theriot 2011; Ruck et al. 2016) and morphological (Ruck & Kociolek 2004) phylogenies of the Surirellales and Rhopalodiales, support the monophyly of certain unnamed groups and strongly reject the monophyly of several genera in the current classification (Round et al. 1990). To rectify a number of these inconsistencies between phylogeny and classification, Ruck et al. (2016) proposed a revised classification of Surirellales and Rhopalodiases based on phylogenetic analyses of five genes and in conjunction with previous morphological cladistic studies (Ruck & Kociolek 2004). The reclassification at the genus and order levels was presented and discussed in Ruck et al. (2016), and a list of required nomenclatural transfers was provided as supplementary material to that publication. However, new combinations appearing in supplementary material in formats other than PDF are not effectively published and are thus invalid under ICN Arts 29.1, 30.1, and 32.1(a). We therefore validate these names here. Epithemia operculata (C.Agardh) Ruck & Nakov, comb. nov. Basionym: Frustulia operculata C.Agardh, Flora oder Botanische Zeitung, Regensburg 2: 627, 1827.
    [Show full text]
  • 1 John P. Kociolek
    1 John P. Kociolek CURRICULUM VITAE University of Colorado Boulder, CO 80309 POSITIONS: Director of the Museum/Professor PHONE: Office: (303)-492-8464 Lab: (303)-492-5074 Fax: (303)-492-4195 EMAIL: [email protected] INSTITUTIONS ATTENDED AND DEGREES ATTAINED Stanford University, Graduate School of Business and Harvard Business School, October 2005 (Leading Change and Organizational Renewal), Executive Management Course The University of Michigan (1983-1988), Ph.D. (Natural Resources) Oregon State University (1982-1983), Post-graduate coursework Bowling Green State University (1980-1982), M.S. (Biological Sciences) University of Iowa (1980), Lakeside Laboratory, Summer coursework University of Michigan (1979), Biological Station, Summer coursework St. Mary's College of Maryland (1978-1980), B.S. (Biological Sciences, graduated with High Honors) Anne Arundel Community College, A.A. (1976-1978) HONORARY DEGREES Honorary Doctorate, Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia (November 1999) AWARDS Top 25 Newsmakers of 2008, For Innovation and Achievement, Engineering News Record, 2008 Distinguished Scientist Award, Shanghai Normal University, Shanghai, China, June, 2011 Stockard Research Fellowship, University of Michigan Biological Station, Summer 2013 Fulbright Research and Teaching Fellowship, Spring 2016 (Poland) Hundred Talents Program Award, People’s Republic of China, Shanxi University, 2017-2022 Teach Algae Award, Phycological Society of America, 2020 PROFESSIONAL SOCIETIES American Association
    [Show full text]